Author
Listed:
- Karol Sztekler
(Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland)
- Agata Mlonka-Mędrala
(Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland)
- Piotr Boruta
(Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland)
- Tomasz Bujok
(Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland)
- Ewelina Radomska
(Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland)
- Łukasz Mika
(Department of Thermal and Fluid Flow Machines, Faculty of Energy and Fuels, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland)
Abstract
Recognizing the growing importance of natural gas as a transition fuel in Poland’s energy mix and the necessity of reducing CO 2 emissions, this article aims to assess the use of carbon capture and storage (CCS) technology to effectively reduce CO 2 emissions from combined cycle gas turbine (CCGT). The research employs the pressure–temperature swing adsorption (PTSA) to capture CO 2 from flue gases. Computer simulations, using IPSEpro (SimTech), are used to calculate the heat and mass balances for CCGT and PTSA units and assess their performance. In the first part of the research, the effect of sorbent type (Na-A and 5A) and flue gas share directed to the PTSA unit on the performance of the CCGT was investigated. Secondly, the parametric analysis regarding the adsorption and desorption pressures in the PTSA was carried out. The results showed that CO 2 emissions from CCGT can be reduced by 1.1 Mt (megatons) per year, but the use of PTSA was associated with a reduction in net electrical power and efficiency of the CCGT by up to 14.7% for Na-A and 11.1% for 5A sorbent. It was also found that the heat and electricity demand of the PTSA depends on the adsorption and desorption pressures.
Suggested Citation
Karol Sztekler & Agata Mlonka-Mędrala & Piotr Boruta & Tomasz Bujok & Ewelina Radomska & Łukasz Mika, 2025.
"Performance Assessment of CCGT Integrated with PTSA-Based CO 2 Capture: Effect of Sorbent Type and Operating Conditions,"
Energies, MDPI, vol. 18(13), pages 1-17, June.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:13:p:3289-:d:1685680
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3289-:d:1685680. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.