IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v248y2019icp104-114.html
   My bibliography  Save this article

A pilot-scale experimental study on CO2 capture using Zeolitic imidazolate framework-8 slurry under normal pressure

Author

Listed:
  • Yan, Shuren
  • Zhu, Ding
  • Zhang, Zhiyong
  • Li, Hai
  • Chen, Guangjin
  • Liu, Bei

Abstract

Efficient capture of CO2 is of great significance for the reduction of greenhouse gas emissions and the control of global warming. We herein report a pilot experiment demonstrating successful carbon capture under normal pressure using flowable slurry formed with Zeolitic imidazolate framework-8 and 2-methylimidazole-glycol-water solution in continuously cycled setup composed of a sorption bubble column (with height 3.7 m and inner diameter 60 mm) and a desorption tank. A series of factors that affect the carbon capture efficiency were investigated systematically. The experimental results show that the use of finer aperture and installing baffles, lower superficial gas velocity, lower sorption temperature, higher regeneration temperature, and low regeneration pressure are favorable for carbon capture. CO2 concentration in the emission gas could be reduced from 24.9 mol% to 0.5–2.5 mol%, indicating that more than 92% of CO2 could be removed. The working loading of CO2 in the recycled slurry reached 1.53 mol/(L·bar). The slurry could be regenerated under very moderate conditions (333 K and 0.05 MPa), which are far from boiling conditions for the solvent. It was also shown that the performance of the slurry remained stable over more than 100 h of cycling. This work demonstrates that the approach based on the use of the slurry is readily applicable, and could lead to energy savings compared to the traditional amine absorption approach.

Suggested Citation

  • Yan, Shuren & Zhu, Ding & Zhang, Zhiyong & Li, Hai & Chen, Guangjin & Liu, Bei, 2019. "A pilot-scale experimental study on CO2 capture using Zeolitic imidazolate framework-8 slurry under normal pressure," Applied Energy, Elsevier, vol. 248(C), pages 104-114.
  • Handle: RePEc:eee:appene:v:248:y:2019:i:c:p:104-114
    DOI: 10.1016/j.apenergy.2019.04.097
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919307603
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.04.097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2016. "CO2 capture using MEA (monoethanolamine) aqueous solution in coal-fired power plants: Modeling and optimization of the absorbing columns," Energy, Elsevier, vol. 109(C), pages 495-505.
    2. Chauvy, Remi & Meunier, Nicolas & Thomas, Diane & De Weireld, Guy, 2019. "Selecting emerging CO2 utilization products for short- to mid-term deployment," Applied Energy, Elsevier, vol. 236(C), pages 662-680.
    3. Ben-Mansour, R. & Habib, M.A. & Bamidele, O.E. & Basha, M. & Qasem, N.A.A. & Peedikakkal, A. & Laoui, T. & Ali, M., 2016. "Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations – A review," Applied Energy, Elsevier, vol. 161(C), pages 225-255.
    4. Lv, Yuexia & Yu, Xinhai & Jia, Jingjing & Tu, Shan-Tung & Yan, Jinyue & Dahlquist, Erik, 2012. "Fabrication and characterization of superhydrophobic polypropylene hollow fiber membranes for carbon dioxide absorption," Applied Energy, Elsevier, vol. 90(1), pages 167-174.
    5. Liu, Yamin & Yu, Xiaojing, 2018. "Carbon dioxide adsorption properties and adsorption/desorption kinetics of amine-functionalized KIT-6," Applied Energy, Elsevier, vol. 211(C), pages 1080-1088.
    6. Lu, Jian-Gang & Lu, Chun-Ting & Chen, Yue & Gao, Liu & Zhao, Xin & Zhang, Hui & Xu, Zheng-Wen, 2014. "CO2 capture by membrane absorption coupling process: Application of ionic liquids," Applied Energy, Elsevier, vol. 115(C), pages 573-581.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wan Chen & Minglong Wang & Shaowu Yang & Zixuan Huang & Mingke Yang & Xiaowan Peng & Bei Liu & Guangjin Chen, 2022. "Experimental Study on Breakthrough Separation for Hydrogen Recovery from Coke Oven Gas Using ZIF-8 Slurry," Energies, MDPI, vol. 15(4), pages 1-12, February.
    2. Xie, Yan & Zheng, Tao & Zhong, Jin-Rong & Zhu, Yu-Jie & Wang, Yun-Fei & Zhang, Yu & Li, Rui & Yuan, Qing & Sun, Chang-Yu & Chen, Guang-Jin, 2020. "Experimental research on self-preservation effect of methane hydrate in porous sediments," Applied Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
    2. Lin, Yi-Feng & Ko, Chia-Chieh & Chen, Chien-Hua & Tung, Kuo-Lun & Chang, Kai-Shiun & Chung, Tsair-Wang, 2014. "Sol–gel preparation of polymethylsilsesquioxane aerogel membranes for CO2 absorption fluxes in membrane contactors," Applied Energy, Elsevier, vol. 129(C), pages 25-31.
    3. Lin, Yi-Feng & Chang, Jun-Min & Ye, Qian & Tung, Kuo-Lun, 2015. "Hydrophobic fluorocarbon-modified silica aerogel tubular membranes with excellent CO2 recovery ability in membrane contactors," Applied Energy, Elsevier, vol. 154(C), pages 21-25.
    4. de Kleijne, Kiane & James, Jebin & Hanssen, Steef V. & van Zelm, Rosalie, 2020. "Environmental benefits of urea production from basic oxygen furnace gas," Applied Energy, Elsevier, vol. 270(C).
    5. Zhao, Ruikai & Zhao, Li & Deng, Shuai & Song, Chunfeng & He, Junnan & Shao, Yawei & Li, Shuangjun, 2017. "A comparative study on CO2 capture performance of vacuum-pressure swing adsorption and pressure-temperature swing adsorption based on carbon pump cycle," Energy, Elsevier, vol. 137(C), pages 495-509.
    6. Ismail Ismail & Vassilis Gaganis, 2023. "Carbon Capture, Utilization, and Storage in Saline Aquifers: Subsurface Policies, Development Plans, Well Control Strategies and Optimization Approaches—A Review," Clean Technol., MDPI, vol. 5(2), pages 1-29, May.
    7. Chu, Fengming & Gao, Qianhong & Li, Shang & Yang, Guoan & Luo, Yan, 2020. "Mass transfer characteristic of ammonia escape and energy penalty analysis in the regeneration process," Applied Energy, Elsevier, vol. 258(C).
    8. Zhang, Fengyuan & Wang, Xiaolin & Lou, Xia & Lipiński, Wojciech, 2021. "The effect of sodium dodecyl sulfate and dodecyltrimethylammonium chloride on the kinetics of CO2 hydrate formation in the presence of tetra-n-butyl ammonium bromide for carbon capture applications," Energy, Elsevier, vol. 227(C).
    9. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    10. Zhang, Rui & Yang, Qi & Yu, Bing & Yu, Hai & Liang, Zhiwu, 2018. "Toward to efficient CO2 capture solvent design by analyzing the effect of substituent type connected to N-atom," Energy, Elsevier, vol. 144(C), pages 1064-1072.
    11. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    12. Chu, Genyun & Fan, Yingjie & Zhang, Dawei & Gao, Minglin & Yu, Jianhua & Xie, Jianhui & Yang, Qingchun, 2022. "A highly efficient and environmentally friendly approach for in-situ utilization of CO2 from coal to ethylene glycol plant," Energy, Elsevier, vol. 256(C).
    13. Ganapathy, Harish & Steinmayer, Sascha & Shooshtari, Amir & Dessiatoun, Serguei & Ohadi, Michael M. & Alshehhi, Mohamed, 2016. "Process intensification characteristics of a microreactor absorber for enhanced CO2 capture," Applied Energy, Elsevier, vol. 162(C), pages 416-427.
    14. Wei, Wei & Liu, Feng & Wang, Jianhui & Chen, Laijun & Mei, Shengwei & Yuan, Tiejiang, 2016. "Robust environmental-economic dispatch incorporating wind power generation and carbon capture plants," Applied Energy, Elsevier, vol. 183(C), pages 674-684.
    15. Lou, Feijian & Zhang, Anfeng & Zhang, Guanghui & Ren, Limin & Guo, Xinwen & Song, Chunshan, 2020. "Enhanced kinetics for CO2 sorption in amine-functionalized mesoporous silica nanosphere with inverted cone-shaped pore structure," Applied Energy, Elsevier, vol. 264(C).
    16. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    17. Zhou, Xiaobin & Liu, Chao & Fan, Yinming & Zhang, Lihao & Tang, Shen & Mo, Shengpeng & Zhu, Yinian & Zhu, Zongqiang, 2022. "Energy-efficient carbon dioxide capture using a novel low-viscous secondary amine-based nonaqueous biphasic solvent: Performance, mechanism, and thermodynamics," Energy, Elsevier, vol. 255(C).
    18. Yudong Ding & Liheng Guo & Xiaoqiang Li & Qiang Liao & Xun Zhu & Hong Wang, 2021. "CO2 absorption of anhydrous colloidal suspension based silica nanospheres with different microstructures," Energy & Environment, , vol. 32(8), pages 1437-1456, December.
    19. Nimmanterdwong, Prathana & Chalermsinsuwan, Benjapon & Piumsomboon, Pornpote, 2017. "Emergy analysis of three alternative carbon dioxide capture processes," Energy, Elsevier, vol. 128(C), pages 101-108.
    20. Bharath, G. & Karthikeyan, G. & Kumar, Anuj & Prakash, J. & Venkatasubbu, Devanand & Kumar Nadda, Ashok & Kumar Gupta, Vijai & Abu Haija, Mohammad & Banat, Fawzi, 2022. "Surface engineering of Au nanostructures for plasmon-enhanced electrochemical reduction of N2 and CO2 into urea in the visible-NIR region," Applied Energy, Elsevier, vol. 318(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:248:y:2019:i:c:p:104-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.