IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v318y2022ics0306261922006031.html
   My bibliography  Save this article

Surface engineering of Au nanostructures for plasmon-enhanced electrochemical reduction of N2 and CO2 into urea in the visible-NIR region

Author

Listed:
  • Bharath, G.
  • Karthikeyan, G.
  • Kumar, Anuj
  • Prakash, J.
  • Venkatasubbu, Devanand
  • Kumar Nadda, Ashok
  • Kumar Gupta, Vijai
  • Abu Haija, Mohammad
  • Banat, Fawzi

Abstract

The photoelectrochemical reduction of CO2 and N2 (N2CO2RR) is a promising method of producing urea under ambient conditions since highly active and stable electrocatalysts are desired. Plasmonic metals have attracted considerable attention due to their enhanced electrochemical activity at visible and near-infrared wavelengths (NIR). Herein, the morphology of Au was tuned to spherical nanoparticles, nanorods, and nanosheets by utilizing a variety of structure-directing agents. Among them, Au nanosheets (Au NSs) can absorb a broad spectrum of NIR wavelengths, enabling electrochemical reduction of N2 into NH3, with high yield rates and higher Faradic efficiency (FE) than most of the N2RR results reported. In addition, a distal associative pathway for N2RR into NH3 has been established over Au NSs. Additionally, the Au NSs photocathode demonstrates high stability over a period of 10 consecutive runs. In addition, this work provides a guide to fabricating highly stable photocathodes that convert N2 and CO2 into urea. Au NSs photocathode achieves a maximum urea yield rate of 98.5 µgureamgcat-1h−1 and FE of 22.7% at −0.7 V vs. RHE. Results show that the N2 and CO2 is the primary factor for urea production, whereas reducing NO3– and HCO3– contributes significantly to the total urea yield rate. Density functional theory calculations (DFT) reveal that Au NSs play a crucial role in promoting N2 and CO2 adsorption, activation, and stimulating the coupling reaction between C-N to form urea by the distal mechanism. As a result, this work opens up the possibility of developing hybrid catalytic systems for simultaneously reducing nitrate-containing wastewater and CO2, thus producing urea-rich treated water for agricultural use and achieving carbon neutrality.

Suggested Citation

  • Bharath, G. & Karthikeyan, G. & Kumar, Anuj & Prakash, J. & Venkatasubbu, Devanand & Kumar Nadda, Ashok & Kumar Gupta, Vijai & Abu Haija, Mohammad & Banat, Fawzi, 2022. "Surface engineering of Au nanostructures for plasmon-enhanced electrochemical reduction of N2 and CO2 into urea in the visible-NIR region," Applied Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:appene:v:318:y:2022:i:c:s0306261922006031
    DOI: 10.1016/j.apenergy.2022.119244
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922006031
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119244?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chauvy, Remi & Meunier, Nicolas & Thomas, Diane & De Weireld, Guy, 2019. "Selecting emerging CO2 utilization products for short- to mid-term deployment," Applied Energy, Elsevier, vol. 236(C), pages 662-680.
    2. Chade Lv & Lixiang Zhong & Hengjie Liu & Zhiwei Fang & Chunshuang Yan & Mengxin Chen & Yi Kong & Carmen Lee & Daobin Liu & Shuzhou Li & Jiawei Liu & Li Song & Gang Chen & Qingyu Yan & Guihua Yu, 2021. "Selective electrocatalytic synthesis of urea with nitrate and carbon dioxide," Nature Sustainability, Nature, vol. 4(10), pages 868-876, October.
    3. Fernández-Dacosta, Cora & Shen, Li & Schakel, Wouter & Ramirez, Andrea & Kramer, Gert Jan, 2019. "Potential and challenges of low-carbon energy options: Comparative assessment of alternative fuels for the transport sector," Applied Energy, Elsevier, vol. 236(C), pages 590-606.
    4. Xiaorong Zhu & Xiaocheng Zhou & Yu Jing & Yafei Li, 2021. "Electrochemical synthesis of urea on MBenes," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    5. Zhang, Zhien & Pan, Shu-Yuan & Li, Hao & Cai, Jianchao & Olabi, Abdul Ghani & Anthony, Edward John & Manovic, Vasilije, 2020. "Recent advances in carbon dioxide utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rishi Verma & Gunjan Sharma & Vivek Polshettiwar, 2024. "The paradox of thermal vs. non-thermal effects in plasmonic photocatalysis," Nature Communications, Nature, vol. 15(1), pages 1-45, December.
    2. Guo, Liang & Yu, Changyou & Sun, Wanchen & Zhang, Hao & Cheng, Peng & Yan, Yuying & Lin, Shaodian & Zeng, Wenpeng & Zhu, Genan & Jiang, Mengqi, 2024. "Study on effects of ethylene or acetylene addition on the stability of ammonia laminar diffusion flame by optical diagnostics and chemical kinetics," Applied Energy, Elsevier, vol. 362(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    2. Xiaoran Zhang & Xiaorong Zhu & Shuowen Bo & Chen Chen & Mengyi Qiu & Xiaoxiao Wei & Nihan He & Chao Xie & Wei Chen & Jianyun Zheng & Pinsong Chen & San Ping Jiang & Yafei Li & Qinghua Liu & Shuangyin , 2022. "Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Qian Wu & Chencheng Dai & Fanxu Meng & Yan Jiao & Zhichuan J. Xu, 2024. "Potential and electric double-layer effect in electrocatalytic urea synthesis," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Liu, Jiangfeng & Zhang, Qi & Li, Hailong & Chen, Siyuan & Teng, Fei, 2022. "Investment decision on carbon capture and utilization (CCU) technologies—A real option model based on technology learning effect," Applied Energy, Elsevier, vol. 322(C).
    5. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    7. Yun, Lingxiang & Xiao, Minkun & Li, Lin, 2022. "Vehicle-to-manufacturing (V2M) system: A novel approach to improve energy demand flexibility for demand response towards sustainable manufacturing," Applied Energy, Elsevier, vol. 323(C).
    8. Chu, Genyun & Fan, Yingjie & Zhang, Dawei & Gao, Minglin & Yu, Jianhua & Xie, Jianhui & Yang, Qingchun, 2022. "A highly efficient and environmentally friendly approach for in-situ utilization of CO2 from coal to ethylene glycol plant," Energy, Elsevier, vol. 256(C).
    9. Zdeb, Janusz & Howaniec, Natalia & Smoliński, Adam, 2023. "Experimental study on combined valorization of bituminous coal derived fluidized bed fly ash and carbon dioxide from energy sector," Energy, Elsevier, vol. 265(C).
    10. Xie, Heping & Liao, Hailong & Zhai, Shuo & Liu, Tao & Wu, Yifan & Wang, Fuhuan & Li, Junbiao & Zhang, Yuan & Chen, Bin, 2023. "Enhancing Zn–CO2 battery with a facile Pd doped perovskite cathode for efficient CO2 to CO conversion," Energy, Elsevier, vol. 263(PB).
    11. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    12. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).
    13. Neslisah Cihan & Ozge Yuksel Orhan, 2020. "The enhanced enzymatic performance of carbonic anhydrase on the reaction rate between CO2 and aqueous solutions of sterically hindered amines," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 925-937, October.
    14. Liang Liu & Lianshui Li, 2021. "The effect of directed technical change on carbon dioxide emissions: evidence from China’s industrial sector at the provincial level," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2463-2486, July.
    15. Bogdan Saletnik & Marcin Fiedur & Radosław Kwarciany & Grzegorz Zaguła & Marcin Bajcar, 2024. "Pyrolysis as a Method for Processing of Waste from Production of Cultivated Tobacco ( Nicotiana tabacum L.)," Sustainability, MDPI, vol. 16(7), pages 1-15, March.
    16. Baek, Seungju & Lee, Sanguk & Shin, Myunghwan & Lee, Jongtae & Lee, Kihyung, 2022. "Analysis of combustion and exhaust characteristics according to changes in the propane content of LPG," Energy, Elsevier, vol. 239(PC).
    17. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    18. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    19. Costa, Alexis & Coppitters, Diederik & Dubois, Lionel & Contino, Francesco & Thomas, Diane & De Weireld, Guy, 2024. "Energy, exergy, economic and environmental (4E) analysis of a cryogenic carbon purification unit with membrane for oxyfuel cement plant flue gas," Applied Energy, Elsevier, vol. 357(C).
    20. Galusnyak, Stefan Cristian & Petrescu, Letitia & Chisalita, Dora Andreea & Cormos, Calin-Cristian, 2022. "Life cycle assessment of methanol production and conversion into various chemical intermediates and products," Energy, Elsevier, vol. 259(C).

    More about this item

    Keywords

    Plasmonic metals; N2 reduction reaction; N2 and CO2 reduction reaction; Ammonia production; Urea production;
    All these keywords.

    JEL classification:

    • N2 - Economic History - - Financial Markets and Institutions
    • N2 - Economic History - - Financial Markets and Institutions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:318:y:2022:i:c:s0306261922006031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.