IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225001185.html
   My bibliography  Save this article

Liquid-adjustment evaporator with zeotropic mixtures: Principle, design and statistical analysis

Author

Listed:
  • Li, Junjie
  • Chen, Jianyong
  • Chen, Ying
  • Luo, Xianglong
  • Liang, Yingzong
  • He, Jiacheng
  • Yang, Zhi

Abstract

Zeotropic mixture has advantages of environmentally-friendly, safe and flexible thermal properties, its featured temperature glide during phase change can match the temperature variations of heat sources, enhancing the system thermodynamic performance. It has been considered as a promising alternative candidate. However, the heat transfer coefficient of zeotropic mixture generally worse than that of its pure composition, and its nonlinear temperature-enthalpy relationship also leads to extra irreversible losses. To overcome these issues, liquid-adjustment is implemented to improve heat transfer capacity and reduce irreversible losses. Firstly, the principles of liquid-adjustment for zeotropic mixture is introduced and illustrated. Secondly, a conceptual design of liquid-adjustment evaporator with counter flow for zeotropic mixture and water is proposed. Thirdly, the optimized scheme is selected and compared to the conventional evaporator. The liquid-adjustment evaporator has a 9.72 % increased heat transfer capacity and a 22.4 % reduced total exergy resistance. Meanwhile, its local heat transfer coefficients can be significantly increased by 111 % and exergy resistance decreased by 52.5 % after the first separation. Finally, statistical analysis is carried out to reveal the interactions and insights of the parameters. It is found that the vapor quality is the main influential factor in both heat transfer coefficient and local slope of T-Q curve.

Suggested Citation

  • Li, Junjie & Chen, Jianyong & Chen, Ying & Luo, Xianglong & Liang, Yingzong & He, Jiacheng & Yang, Zhi, 2025. "Liquid-adjustment evaporator with zeotropic mixtures: Principle, design and statistical analysis," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001185
    DOI: 10.1016/j.energy.2025.134476
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225001185
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134476?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akpomiemie, Mary O. & Smith, Robin, 2016. "Retrofit of heat exchanger networks with heat transfer enhancement based on an area ratio approach," Applied Energy, Elsevier, vol. 165(C), pages 22-35.
    2. Mousa, Mohamed H. & Yang, Cheng-Min & Nawaz, Kashif & Miljkovic, Nenad, 2022. "Review of heat transfer enhancement techniques in two-phase flows for highly efficient and sustainable cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    3. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Zühlsdorf, Benjamin & Jensen, Jonas Kjær & Cignitti, Stefano & Madsen, Claus & Elmegaard, Brian, 2018. "Analysis of temperature glide matching of heat pumps with zeotropic working fluid mixtures for different temperature glides," Energy, Elsevier, vol. 153(C), pages 650-660.
    5. Mark O. McLinden & J. Steven Brown & Riccardo Brignoli & Andrei F. Kazakov & Piotr A. Domanski, 2017. "Limited options for low-global-warming-potential refrigerants," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    6. Rawat, Rahul & Lamba, Ravita & Kaushik, S.C., 2017. "Thermodynamic study of solar photovoltaic energy conversion: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 630-638.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ziyu & Lu, Zhenyu & Yelishala, Sai C. & Metghalchi, Hameed & Levendis, Yiannis A., 2021. "Flame characteristics of propane-air-carbon dioxide blends at elevated temperatures and pressures," Energy, Elsevier, vol. 228(C).
    2. Jouhara, Hussam & Żabnieńska-Góra, Alina & Delpech, Bertrand & Olabi, Valentina & El Samad, Tala & Sayma, Abdulnaser, 2024. "High-temperature heat pumps: Fundamentals, modelling approaches and applications," Energy, Elsevier, vol. 303(C).
    3. Wu, Ding & Ma, Bo & Zhang, Ji & Chen, Yanqi & Shen, Feifan & Chen, Xun & Wen, Chuang & Yang, Yan, 2024. "Working fluid pair selection of thermally integrated pumped thermal electricity storage system for waste heat recovery and energy storage," Applied Energy, Elsevier, vol. 371(C).
    4. Siddiqui, Muhammad Ehtisham & Almatrafi, Eydhah & Bamasag, Ahmad & Saeed, Usman, 2022. "Adoption of CO2-based binary mixture to operate transcritical Rankine cycle in warm regions," Renewable Energy, Elsevier, vol. 199(C), pages 1372-1380.
    5. Kim, Junyoung & James, Nelson & Maguire, Jeff, 2024. "Investigation of a high-temperature combination heat pump for lower-cost electrification in multifamily buildings," Applied Energy, Elsevier, vol. 376(PA).
    6. Sovacool, Benjamin K. & Griffiths, Steve & Kim, Jinsoo & Bazilian, Morgan, 2021. "Climate change and industrial F-gases: A critical and systematic review of developments, sociotechnical systems and policy options for reducing synthetic greenhouse gas emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. Albà, C.G. & Alkhatib, I.I.I. & Llovell, F. & Vega, L.F., 2023. "Hunting sustainable refrigerants fulfilling technical, environmental, safety and economic requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Zhu, Tingting & Vieren, Elias & Liang, Jierong & Thorsen, Jan Eric & De Paepe, Michel & Lecompte, Steven & Elmegaard, Brian, 2024. "Booster heat pump with drop-in zeotropic mixtures applied in ultra-low temperature district heating system," Energy, Elsevier, vol. 305(C).
    9. Wang, Bo & Chao, Yijun & Zhao, Qinyu & Wang, Haoren & Wang, Yabin & Gan, Zhihua, 2021. "A high efficiency stirling-type pulse tube refrigerator for cooling above 200 K," Energy, Elsevier, vol. 215(PB).
    10. Huang, Yisheng & Chen, Jianyong & Chen, Ying & Luo, Xianglong & Liang, Yingzong & He, Jiacheng & Yang, Zhi, 2022. "Performance explorations of an organic Rankine cycle featured with separating and mixing composition of zeotropic mixture," Energy, Elsevier, vol. 257(C).
    11. Chin, Hon Huin & Wang, Bohong & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Zeng, Min & Wang, Qiu-Wang, 2020. "Long-term investment and maintenance planning for heat exchanger network retrofit," Applied Energy, Elsevier, vol. 279(C).
    12. Tomc, Urban & Nosan, Simon & Vidrih, Boris & Bogić, Simon & Navickaite, Kristina & Vozel, Katja & Bobič, Miha & Kitanovski, Andrej, 2024. "Small demonstrator of a thermoelectric heat-pump booster for an ultra-low-temperature district-heating substation," Applied Energy, Elsevier, vol. 361(C).
    13. Zhang, Xinxin & Li, Yingzhen, 2024. "A review of recent research on hydrofluoroolefin (HFO) and hydrochlorofluoroolefin (HCFO) refrigerants," Energy, Elsevier, vol. 311(C).
    14. Lu, Pei & Chen, Kaihuang & Luo, Xianglong & Wu, Wei & Liang, Yingzong & Chen, Jianyong & Chen, Ying, 2024. "Experimental and simulation study on a zeotropic ORC system using R1234ze(E)/R245fa as working fluid," Energy, Elsevier, vol. 292(C).
    15. Manuel Naveiro & Manuel Romero Gómez & Ignacio Arias-Fernández & Álvaro Baaliña Insua, 2022. "Thermodynamic and Economic Analyses of Zero-Emission Open Loop Offshore Regasification Systems Integrating ORC with Zeotropic Mixtures and LNG Open Power Cycle," Energies, MDPI, vol. 15(22), pages 1-24, November.
    16. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    17. Liu, Bo & Guo, Xiangji & Xi, Xiuzhi & Sun, Jianhua & Zhang, Bo & Yang, Zhuqiang, 2023. "Thermodynamic analyses of ejector refrigeration cycle with zeotropic mixture," Energy, Elsevier, vol. 263(PD).
    18. Butt, Sannan Salabat & Miyazaki, Takahiko & Higashi, Yukihiro & Thu, Kyaw, 2025. "Achieving sustainability in ultra-low temperature (ULT) cold storage using low-GWP refrigerants: A case for the tuna industry in Japan," Energy, Elsevier, vol. 316(C).
    19. Chin Leong Lim, 2020. "Fundamental Concepts of Human Thermoregulation and Adaptation to Heat: A Review in the Context of Global Warming," IJERPH, MDPI, vol. 17(21), pages 1-34, October.
    20. Barco-Burgos, J. & Bruno, J.C. & Eicker, U. & Saldaña-Robles, A.L. & Alcántar-Camarena, V., 2022. "Review on the integration of high-temperature heat pumps in district heating and cooling networks," Energy, Elsevier, vol. 239(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.