IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224035850.html
   My bibliography  Save this article

Multiple effects of high efficiency solid inertants on fire hazard of the accumulated Mg dust layer

Author

Listed:
  • Meng, Fanyi
  • Luo, Zhenmin
  • Yu, Yingying
  • Wang, Tao
  • Su, Bin
  • Yuan, Chunmiao
  • Li, Gang
  • Hou, Xiaochen

Abstract

Due to low melting and boiling points and extreme reactivity in the chemical reaction of Mg powder, inert powders that have a significant inerting effect on Mg dust clouds can cause significant combustion enhancement of the accumulated Mg dust layer. To circumvent this unforeseen fire hazard, this research selects five types of inertants that have been demonstrated to exert an inerting effect on metal dust clouds and possess a potential flame-retardant effect on Mg dust layers. This research aims to investigate the effect of inert powders on Mg dust layers to identify an efficient inerting mechanism for Mg dust layers. The results indicate that the selection of inertants for Mg dust must be based on a comprehensive evaluation of their physical and chemical properties. The presence of substances with strong decomposition and decomposition products that readily produce gases will destroy the oxide crust on the surface of the accumulated Mg dust layer, thereby causing violent gas-phase combustion. In the case of highly chemically stable substances, the melting point is of primary importance. The formation of cracks in the oxide crust is also a consequence of the higher melting point of inertants, resulting in a combustion enhancement of the mixed dust layer. Inertants with a low melting point and a high boiling point demonstrate a high degree of inerting efficiency for Mg dust layers. The melting of the inert substances forms a liquid film, which prevents the Mg powder from coming into contact with the air surrounding and within the combustion zone. The results of this research are both instructive and valuable for preventing explosions in the process industry involving metal dust materials.

Suggested Citation

  • Meng, Fanyi & Luo, Zhenmin & Yu, Yingying & Wang, Tao & Su, Bin & Yuan, Chunmiao & Li, Gang & Hou, Xiaochen, 2024. "Multiple effects of high efficiency solid inertants on fire hazard of the accumulated Mg dust layer," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035850
    DOI: 10.1016/j.energy.2024.133807
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224035850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133807?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Shusen & Deng, Lisheng & Li, Jun & Kubota, Mitsuhiro & Kobayashi, Noriyuki & Huang, Hongyu, 2024. "Preparation and properties of activated carbon-based Na3PO4 composites for low-temperature thermochemical heat storage," Energy, Elsevier, vol. 301(C).
    2. Jiang, Haipeng & Bi, Mingshu & Peng, Qingkui & Gao, Wei, 2020. "Suppression of pulverized biomass dust explosion by NaHCO3 and NH4H2PO4," Renewable Energy, Elsevier, vol. 147(P1), pages 2046-2055.
    3. Xiao, Qiuping & Zhang, Zhiwei & Shen, Xiaobo & Cai, Chenren & Ma, Pan & Li, Yuehua & Chen, Wanghua, 2023. "Combustion characteristics and reactions of stacked wet pulverized magnesium," Energy, Elsevier, vol. 268(C).
    4. Bergthorson, J.M. & Goroshin, S. & Soo, M.J. & Julien, P. & Palecka, J. & Frost, D.L. & Jarvis, D.J., 2015. "Direct combustion of recyclable metal fuels for zero-carbon heat and power," Applied Energy, Elsevier, vol. 160(C), pages 368-382.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jian & Chen, Wukun & Dong, Ruixing & Shi, Jihao & Zhang, Yanni & Wang, Weilin & Zhou, Kuibin, 2025. "Experimental study on fire thermal characteristics of flammable gases leakage underwater," Energy, Elsevier, vol. 316(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janicka, J. & Debiagi, P. & Scholtissek, A. & Dreizler, A. & Epple, B. & Pawellek, R. & Maltsev, A. & Hasse, C., 2023. "The potential of retrofitting existing coal power plants: A case study for operation with green iron," Applied Energy, Elsevier, vol. 339(C).
    2. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    3. Tsai, Yun-Ting & Yang, Yi & Pan, Yong & Shu, Chi-Min, 2023. "Catalytic effects of magnesium-transition metal (Fe and Ni) hydrides on oxygen and nitrogen reduction: A case study of explosive characteristics and their environmental contaminants," Energy, Elsevier, vol. 280(C).
    4. Yang, Ke & Chen, Kaifeng & Ji, Hong & Xing, Zhixiang & Hao, Yongmei & Wu, Jie & Jiang, Juncheng, 2021. "Experimental study on the effect of modified attapulgite powder with different outlet blockage ratios on methane-air explosion," Energy, Elsevier, vol. 237(C).
    5. Chao Jin & Xiaodan Li & Teng Xu & Juntong Dong & Zhenlong Geng & Jia Liu & Chenyun Ding & Jingjing Hu & Ahmed El ALAOUI & Qing Zhao & Haifeng Liu, 2023. "Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity," Energies, MDPI, vol. 16(18), pages 1-29, September.
    6. Tomasz Spietz & Rafał Fryza & Janusz Lasek & Jarosław Zuwała, 2025. "Thermochemical Energy Storage Based on Salt Hydrates: A Comprehensive Review," Energies, MDPI, vol. 18(10), pages 1-81, May.
    7. Choi, Dongho & Oh, Jeong-Ik & Baek, Kitae & Lee, Jechan & Kwon, Eilhann E., 2018. "Compositional modification of products from Co-Pyrolysis of chicken manure and biomass by shifting carbon distribution from pyrolytic oil to syngas using CO2," Energy, Elsevier, vol. 153(C), pages 530-538.
    8. Maas, Pascal & Schiemann, Martin & Scherer, Viktor & Fischer, Peter & Taroata, Dan & Schmid, Günther, 2018. "Lithium as energy carrier: CFD simulations of LI combustion in a 100MW slag tap furnace," Applied Energy, Elsevier, vol. 227(C), pages 506-515.
    9. Bennett, Carly & Blanchet, Jocelyn & Trowell, Keena & Bergthorson, Jeffrey, 2023. "Decarbonizing Canada’s energy supply and exports with solar PV and e-fuels," Renewable Energy, Elsevier, vol. 217(C).
    10. Schiemann, Martin & Bergthorson, Jeffrey & Fischer, Peter & Scherer, Viktor & Taroata, Dan & Schmid, Günther, 2016. "A review on lithium combustion," Applied Energy, Elsevier, vol. 162(C), pages 948-965.
    11. Garra, Patxi & Leyssens, Gontrand & Allgaier, Olivier & Schönnenbeck, Cornelius & Tschamber, Valérie & Brilhac, Jean-François & Tahtouh, Toni & Guézet, Olivier & Allano, Sylvain, 2017. "Magnesium/air combustion at pilot scale and subsequent PM and NOx emissions," Applied Energy, Elsevier, vol. 189(C), pages 578-587.
    12. Mohammadmahdi Sohrabi & Barat Ghobadian & Gholamhassan Najafi & Willie Prasidha & Mohammadreza Baigmohammadi & Philip de Goey, 2024. "Experimental and Statistical Analysis of Iron Powder for Green Heat Production," Sustainability, MDPI, vol. 16(21), pages 1-15, October.
    13. Laraqui, Driss & Leyssens, Gontrand & Schonnenbeck, Cornelius & Allgaier, Olivier & Lomba, Ricardo & Dumand, Clément & Brilhac, Jean-François, 2020. "Heat recovery and metal oxide particles trapping in a power generation system using a swirl-stabilized metal-air burner," Applied Energy, Elsevier, vol. 264(C).
    14. Kang, Dohyung & Lim, Hyun Suk & Lee, Minbeom & Lee, Jae W., 2018. "Syngas production on a Ni-enhanced Fe2O3/Al2O3 oxygen carrier via chemical looping partial oxidation with dry reforming of methane," Applied Energy, Elsevier, vol. 211(C), pages 174-186.
    15. Debiagi, P. & Rocha, R.C. & Scholtissek, A. & Janicka, J. & Hasse, C., 2022. "Iron as a sustainable chemical carrier of renewable energy: Analysis of opportunities and challenges for retrofitting coal-fired power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    16. Bozorg, Mehdi Vahabzadeh & Doranehgard, Mohammad Hossein & Hong, Kun & Xiong, Qingang & Li, Larry K.B., 2020. "A numerical study on discrete combustion of polydisperse magnesium aero-suspensions," Energy, Elsevier, vol. 194(C).
    17. Bidabadi, Mehdi & Bozorg, Mehdi Vahabzadeh & Bordbar, Vahid, 2017. "A three-dimensional simulation of discrete combustion of randomly dispersed micron-aluminum particle dust cloud and applying genetic algorithm to obtain the flame front," Energy, Elsevier, vol. 140(P1), pages 804-817.
    18. Bergthorson, Jeffrey M. & Yavor, Yinon & Palecka, Jan & Georges, William & Soo, Michael & Vickery, James & Goroshin, Samuel & Frost, David L. & Higgins, Andrew J., 2017. "Metal-water combustion for clean propulsion and power generation," Applied Energy, Elsevier, vol. 186(P1), pages 13-27.
    19. Dehhaghi, Mona & Kazemi Shariat Panahi, Hamed & Aghbashlo, Mortaza & Lam, Su Shiung & Tabatabaei, Meisam, 2021. "The effects of nanoadditives on the performance and emission characteristics of spark-ignition gasoline engines: A critical review with a focus on health impacts," Energy, Elsevier, vol. 225(C).
    20. Julien Pedneault & Guillaume Majeau‐Bettez & Manuele Margni, 2023. "How much sorting is required for a circular low carbon aluminum economy?," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 977-992, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.