IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics036054422403456x.html
   My bibliography  Save this article

Interval price predictions for coal using a new multi-scale ensemble model

Author

Listed:
  • Wu, Siping
  • Liu, Junjie
  • Liu, Lang

Abstract

Accurate coal price prediction is important for the development of coal policy and prevention of coal market risks. The aim of this paper is to forecast coal prices in China by enhancing the performance of the variational mode decomposition (VMD) using an arithmetic optimization algorithm (AOA), which is then combined with N-BEATS, quantile regression (QR), and mean impact value algorithms (MIV) to create a new multi-scale ensemble forecasting model (VANQM). First, we use VMD that has been enhanced by the AOA to separate the coal price time series. Second, N-BEATS improved by QR is utilized to forecast the subsequences. The results of coal price interval forecasting are yielded. Finally, we use MIV to analyze how much variables affect coal prices. The findings of the study indicate that: the three key variables that have the greatest impact on coal prices are coal mining industry index, coal industry index, and A-share electricity industry index; the effect of the model's interval prediction is superior to the deterministic prediction in its current state; when the confidence levels are at 70 %, 80 %, and 90 %, PICP values of VANQM model are greater than the corresponding confidence levels. To summarize, when compared to the benchmark model, VANQM performs more accurately and consistently.

Suggested Citation

  • Wu, Siping & Liu, Junjie & Liu, Lang, 2024. "Interval price predictions for coal using a new multi-scale ensemble model," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s036054422403456x
    DOI: 10.1016/j.energy.2024.133678
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422403456X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133678?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Cheng & Chen, Xiyang, 2019. "Predicting energy consumption: A multiple decomposition-ensemble approach," Energy, Elsevier, vol. 189(C).
    2. Li, Jianglong & Xie, Chunping & Long, Houyin, 2019. "The roles of inter-fuel substitution and inter-market contagion in driving energy prices: evidences from China’s coal market," LSE Research Online Documents on Economics 102540, London School of Economics and Political Science, LSE Library.
    3. Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
    4. Matyjaszek, Marta & Riesgo Fernández, Pedro & Krzemień, Alicja & Wodarski, Krzysztof & Fidalgo Valverde, Gregorio, 2019. "Forecasting coking coal prices by means of ARIMA models and neural networks, considering the transgenic time series theory," Resources Policy, Elsevier, vol. 61(C), pages 283-292.
    5. Xiaopeng Guo & Jiaxing Shi & Dongfang Ren, 2016. "Coal Price Forecasting and Structural Analysis in China," Discrete Dynamics in Nature and Society, Hindawi, vol. 2016, pages 1-7, October.
    6. Li, Jinchao & Wu, Qianqian & Tian, Yu & Fan, Liguo, 2021. "Monthly Henry Hub natural gas spot prices forecasting using variational mode decomposition and deep belief network," Energy, Elsevier, vol. 227(C).
    7. Kaufmann, Robert K. & Hines, Edward, 2018. "The effects of combined-cycle generation and hydraulic fracturing on the price for coal, oil, and natural gas: Implications for carbon taxes," Energy Policy, Elsevier, vol. 118(C), pages 603-611.
    8. Wu, Siping & Xia, Guilin & Liu, Lang, 2023. "A novel decomposition integration model for power coal price forecasting," Resources Policy, Elsevier, vol. 80(C).
    9. Zhang, Kefei & Cao, Hua & Thé, Jesse & Yu, Hesheng, 2022. "A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms," Applied Energy, Elsevier, vol. 306(PA).
    10. Ding, Lili & Zhao, Zhongchao & Han, Meng, 2021. "Probability density forecasts for steam coal prices in China: The role of high-frequency factors," Energy, Elsevier, vol. 220(C).
    11. Tan, Jinghua & Li, Zhixi & Zhang, Chuanhui & Shi, Long & Jiang, Yuansheng, 2024. "A multiscale time-series decomposition learning for crude oil price forecasting," Energy Economics, Elsevier, vol. 136(C).
    12. Li, Jianglong & Xie, Chunping & Long, Houyin, 2019. "The roles of inter-fuel substitution and inter-market contagion in driving energy prices: Evidences from China’s coal market," Energy Economics, Elsevier, vol. 84(C).
    13. Herrera, Gabriel Paes & Constantino, Michel & Tabak, Benjamin Miranda & Pistori, Hemerson & Su, Jen-Je & Naranpanawa, Athula, 2019. "Long-term forecast of energy commodities price using machine learning," Energy, Elsevier, vol. 179(C), pages 214-221.
    14. Li, Guohui & Yin, Shibo & Yang, Hong, 2022. "A novel crude oil prices forecasting model based on secondary decomposition," Energy, Elsevier, vol. 257(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao, Qihui & Du, Yongqiang & Xue, Wenxuan & Yang, Zhiyuan & Jia, Zhenxin & Shao, Xianzhu & Xu, Xue & Duan, Hongbo & Zhu, Zhipeng, 2024. "Predicting China's thermal coal price: Does multivariate decomposition-integrated forecasting model with window rolling work?," Resources Policy, Elsevier, vol. 99(C).
    2. Wu, Siping & Xia, Guilin & Liu, Lang, 2023. "A novel decomposition integration model for power coal price forecasting," Resources Policy, Elsevier, vol. 80(C).
    3. Bingzi Jin & Xiaojie Xu, 2025. "Forecasts of coking coal futures price indices through Gaussian process regressions," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 38(1), pages 203-217, March.
    4. Xu, Mengjie & Li, Xiang & Li, Qianwen & Sun, Chuanwang, 2024. "LNBi-GRU model for coal price prediction and pattern recognition analysis," Applied Energy, Elsevier, vol. 365(C).
    5. Bingzi Jin & Xiaojie Xu, 2025. "Machine learning price index forecasts of flat steel products," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 38(1), pages 97-117, March.
    6. Lahmiri, Salim, 2024. "Fossil energy market price prediction by using machine learning with optimal hyper-parameters: A comparative study," Resources Policy, Elsevier, vol. 92(C).
    7. Xiaojie Xu & Yun Zhang, 2023. "Steel price index forecasting through neural networks: the composite index, long products, flat products, and rolled products," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(4), pages 563-582, December.
    8. Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
    9. Xiaojie Xu & Yun Zhang, 2023. "Coking coal futures price index forecasting with the neural network," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(2), pages 349-359, June.
    10. Ding, Lili & Zhao, Zhongchao & Han, Meng, 2021. "Probability density forecasts for steam coal prices in China: The role of high-frequency factors," Energy, Elsevier, vol. 220(C).
    11. Li, Zheng-Zheng & Su, Chi-Wei & Chang, Tsangyao & Lobonţ, Oana-Ramona, 2022. "Policy-driven or market-driven? Evidence from steam coal price bubbles in China," Resources Policy, Elsevier, vol. 78(C).
    12. Zhang, Jiahao & Zhang, Yifeng & Wei, Yu & Wang, Zhuo, 2024. "Normal and extreme impact and connectedness between fossil energy futures markets and uncertainties: Does El Niño-Southern Oscillation matter?," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 188-215.
    13. Junjie Liu & Lang Liu, 2024. "Point and Interval Forecasting of Coal Price Adopting a Novel Decomposition Integration Model," Energies, MDPI, vol. 17(16), pages 1-17, August.
    14. Zhang, Kefei & Cao, Hua & Thé, Jesse & Yu, Hesheng, 2022. "A hybrid model for multi-step coal price forecasting using decomposition technique and deep learning algorithms," Applied Energy, Elsevier, vol. 306(PA).
    15. Wang, Tiantian & Wu, Fei & Dickinson, David & Zhao, Wanli, 2024. "Energy price bubbles and extreme price movements: Evidence from China's coal market," Energy Economics, Elsevier, vol. 129(C).
    16. Shiqiu Zhu & Yuanying Chi & Kaiye Gao & Yahui Chen & Rui Peng, 2022. "Analysis of Influencing Factors of Thermal Coal Price," Energies, MDPI, vol. 15(15), pages 1-16, August.
    17. Wang, Xiaoyu & Wang, Jiaojiao & Wang, Wenhuan & Zhang, Shuquan, 2023. "International and Chinese energy markets: Dynamic spillover effects," Energy, Elsevier, vol. 282(C).
    18. Kayani, Umar Nawaz & Hassan, M. Kabir & Moussa, Faten & Hossain, Gazi Farid, 2023. "Oil in crisis: What can we learn," The Journal of Economic Asymmetries, Elsevier, vol. 28(C).
    19. Ferrari, Davide & Ravazzolo, Francesco & Vespignani, Joaquin, 2021. "Forecasting energy commodity prices: A large global dataset sparse approach," Energy Economics, Elsevier, vol. 98(C).
    20. Gong, Xu & Liu, Yun & Wang, Xiong, 2021. "Dynamic volatility spillovers across oil and natural gas futures markets based on a time-varying spillover method," International Review of Financial Analysis, Elsevier, vol. 76(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s036054422403456x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.