IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v311y2024ics0360544224030998.html
   My bibliography  Save this article

Flexible design of renewable hydrogen production systems through identifying bottlenecks under uncertainty

Author

Listed:
  • Wang, Jing
  • Ye, Kai
  • Kang, Lixia
  • Liu, Yongzhong

Abstract

Renewable hydrogen production technology within the energy sector stands as a vital avenue towards decarbonization in process industries. However, for systems characterized by high penetration of renewable energy, the challenges posed by uncertain parameters impacting stable production present significant obstacles to the large-scale application of hydrogen production from renewable energy. To address the issues, this work proposed a comprehensive four-step strategy for the bottleneck identification and optimization of the renewable hydrogen production systems (RHPS), which encompasses four models including system configuration optimization, flexibility analysis, bottleneck identification, and debottlenecking models. The effectiveness of the proposed strategy is substantiated through a case study. The results indicate that positive fluctuations on supply side and negative fluctuations on demand side contribute to bolstering the flexibility of RHPS. When the RHPS possesses sufficient flexibility, the critical fluctuation amplitude for photovoltaic power is −36 %, whereas for wind turbine power, it stands at −32 %. It highlights that when the photovoltaic power fluctuates, the ability of RHPS to maintain its own stability is stronger than when the wind turbine power fluctuates. Furthermore, when the fluctuations of supply side are positive, the rate of change in critical fluctuation amplitudes on the supply side is 4.63 times than that of the demand side. This underscores that the power decline in the supply side has a more pronounced detrimental effect on the stability of RHPS than an increase in the demand side. The proposed strategy for optimizing RHPS offers valuable theoretical insights for the system design and retrofitting under uncertainty.

Suggested Citation

  • Wang, Jing & Ye, Kai & Kang, Lixia & Liu, Yongzhong, 2024. "Flexible design of renewable hydrogen production systems through identifying bottlenecks under uncertainty," Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224030998
    DOI: 10.1016/j.energy.2024.133323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224030998
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Onishi, Viviani C. & Antunes, Carlos H. & Fraga, Eric S. & Cabezas, Heriberto, 2019. "Stochastic optimization of trigeneration systems for decision-making under long-term uncertainty in energy demands and prices," Energy, Elsevier, vol. 175(C), pages 781-797.
    2. Shin, Joohyun & Lee, Jay H. & Realff, Matthew J., 2017. "Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 616-633.
    3. Coppitters, Diederik & De Paepe, Ward & Contino, Francesco, 2019. "Surrogate-assisted robust design optimization and global sensitivity analysis of a directly coupled photovoltaic-electrolyzer system under techno-economic uncertainty," Applied Energy, Elsevier, vol. 248(C), pages 310-320.
    4. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2022. "A multi-objective approach to determine time series aggregation strategies for optimal design of multi-energy systems," Energy, Elsevier, vol. 258(C).
    5. Li, Yuxuan & Zhang, Junli & Wu, Xiao & Shen, Jiong & Maréchal, François, 2023. "Stochastic-robust planning optimization method based on tracking-economy extreme scenario tradeoff for CCHP multi-energy system," Energy, Elsevier, vol. 283(C).
    6. Bhandari, Ramchandra & Shah, Ronak Rakesh, 2021. "Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany," Renewable Energy, Elsevier, vol. 177(C), pages 915-931.
    7. Shen, Xiaojun & Li, Xingyi & Yuan, Jiahai & Jin, Yu, 2022. "A hydrogen-based zero-carbon microgrid demonstration in renewable-rich remote areas: System design and economic feasibility," Applied Energy, Elsevier, vol. 326(C).
    8. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    9. Hren, Robert & Vujanović, Annamaria & Van Fan, Yee & Klemeš, Jiří Jaromír & Krajnc, Damjan & Čuček, Lidija, 2023. "Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Lu, Xinhui & Li, Haobin & Zhou, Kaile & Yang, Shanlin, 2023. "Optimal load dispatch of energy hub considering uncertainties of renewable energy and demand response," Energy, Elsevier, vol. 262(PB).
    11. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2024. "Optimal design of a renewable hydrogen production system by coordinating multiple PV arrays and multiple electrolyzers," Renewable Energy, Elsevier, vol. 225(C).
    12. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    13. Thema, M. & Bauer, F. & Sterner, M., 2019. "Power-to-Gas: Electrolysis and methanation status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 775-787.
    14. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    15. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Design of distributed energy systems under uncertainty: A two-stage stochastic programming approach," Applied Energy, Elsevier, vol. 222(C), pages 932-950.
    16. Wang, Jing & Kang, Lixia & Huang, Xiankun & Liu, Yongzhong, 2021. "An analysis framework for quantitative evaluation of parametric uncertainty in a cooperated energy storage system with multiple energy carriers," Energy, Elsevier, vol. 226(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2024. "Optimal design of a renewable hydrogen production system by coordinating multiple PV arrays and multiple electrolyzers," Renewable Energy, Elsevier, vol. 225(C).
    2. Petkov, Ivalin & Gabrielli, Paolo, 2020. "Power-to-hydrogen as seasonal energy storage: an uncertainty analysis for optimal design of low-carbon multi-energy systems," Applied Energy, Elsevier, vol. 274(C).
    3. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2022. "A multi-objective approach to determine time series aggregation strategies for optimal design of multi-energy systems," Energy, Elsevier, vol. 258(C).
    4. Wang, Jing & Kang, Lixia & Huang, Xiankun & Liu, Yongzhong, 2021. "An analysis framework for quantitative evaluation of parametric uncertainty in a cooperated energy storage system with multiple energy carriers," Energy, Elsevier, vol. 226(C).
    5. Robert Bauer & Dominik Schopf & Grégoire Klaus & Raimund Brotsack & Javier Valdes, 2022. "Energy Cell Simulation for Sector Coupling with Power-to-Methane: A Case Study in Lower Bavaria," Energies, MDPI, vol. 15(7), pages 1-22, April.
    6. Bartolini, Andrea & Comodi, Gabriele & Salvi, Danilo & Østergaard, Poul Alberg, 2020. "Renewables self-consumption potential in districts with high penetration of electric vehicles," Energy, Elsevier, vol. 213(C).
    7. Qi, Meng & Vo, Dat Nguyen & Yu, Haoshui & Shu, Chi-Min & Cui, Chengtian & Liu, Yi & Park, Jinwoo & Moon, Il, 2023. "Strategies for flexible operation of power-to-X processes coupled with renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    8. Coppitters, Diederik & Verleysen, Kevin & De Paepe, Ward & Contino, Francesco, 2022. "How can renewable hydrogen compete with diesel in public transport? Robust design optimization of a hydrogen refueling station under techno-economic and environmental uncertainty," Applied Energy, Elsevier, vol. 312(C).
    9. Morgenthaler, Simon & Dünzen, Justus & Stadler, Ingo & Witthaut, Dirk, 2021. "Three stages in the co-transformation of the energy and mobility sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Moradpoor, Iraj & Syri, Sanna & Santasalo-Aarnio, Annukka, 2023. "Green hydrogen production for oil refining – Finnish case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    11. Maeder, Mattia & Weiss, Olga & Boulouchos, Konstantinos, 2021. "Assessing the need for flexibility technologies in decarbonized power systems: A new model applied to Central Europe," Applied Energy, Elsevier, vol. 282(PA).
    12. Bohlayer, Markus & Bürger, Adrian & Fleschutz, Markus & Braun, Marco & Zöttl, Gregor, 2021. "Multi-period investment pathways - Modeling approaches to design distributed energy systems under uncertainty," Applied Energy, Elsevier, vol. 285(C).
    13. de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Energy, Elsevier, vol. 213(C).
    14. Marko Hočevar & Lovrenc Novak & Primož Drešar & Gašper Rak, 2022. "The Status Quo and Future of Hydropower in Slovenia," Energies, MDPI, vol. 15(19), pages 1-13, September.
    15. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    16. Steinegger, Josef & Hammer, Andreas & Wallner, Stefan & Kienberger, Thomas, 2024. "Revolutionizing heat distribution: A method for harnessing industrial waste heat with supra-regional district heating networks," Applied Energy, Elsevier, vol. 372(C).
    17. Behrang Shirizadeh, Quentin Perrier, and Philippe Quirion, 2022. "How Sensitive are Optimal Fully Renewable Power Systems to Technology Cost Uncertainty?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    18. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    19. Liu, Hailiang & Andresen, Gorm Bruun & Greiner, Martin, 2018. "Cost-optimal design of a simplified highly renewable Chinese electricity network," Energy, Elsevier, vol. 147(C), pages 534-546.
    20. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224030998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.