IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v301y2024ics0360544224011484.html
   My bibliography  Save this article

Stochastic inversion of fracture networks using the reversible jump Markov chain Monte Carlo algorithm

Author

Listed:
  • Feng, Runhai
  • Nasser, Saleh

Abstract

Characterization of fracture networks is essential in the production optimization or storage calculation for enhanced geothermal systems or geologic carbon storage. A novel inversion approach is proposed for estimating the fracture networks in this research. The discrete fracture network technique is adopted to probabilistically describe various fracture parameters such as trace length, midpoint position or azimuthal angle. The reversible jump Markov chain Monte Carlo algorithm is applied to explore the target posterior distribution of model parameters of differing dimensionality, in which the number of fractures is assumed to be unknown. More specifically, the birth-death strategy is utilized to perturb the fracture number iteratively in the sampling process. The proposed methodology is applied with two different types of observational datasets, namely the head records from steady-state flow simulation and the acoustic impedance obtained from seismic inversion. The sampling results can successfully recover the fracture geometry in the observed domain, and the number of fractures in the system can be retrieved as well. Benchmarked on multiple Markov chain trials, the technique of parallel tempering can greatly improve the convergence efficiency and increase the diversity of sampled posterior models, through the random swapping of model states across the whole temperature ladder.

Suggested Citation

  • Feng, Runhai & Nasser, Saleh, 2024. "Stochastic inversion of fracture networks using the reversible jump Markov chain Monte Carlo algorithm," Energy, Elsevier, vol. 301(C).
  • Handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224011484
    DOI: 10.1016/j.energy.2024.131375
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131375?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:301:y:2024:i:c:s0360544224011484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.