IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-45227-w.html
   My bibliography  Save this article

scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data

Author

Listed:
  • Ziqi Zhang

    (Georgia Institute of Technology)

  • Xinye Zhao

    (Georgia Institute of Technology)

  • Mehak Bindra

    (Georgia Institute of Technology)

  • Peng Qiu

    (Georgia Institute of Technology and Emory University)

  • Xiuwei Zhang

    (Georgia Institute of Technology)

Abstract

Single-cell RNA-sequencing (scRNA-seq) has been widely used for disease studies, where sample batches are collected from donors under different conditions including demographic groups, disease stages, and drug treatments. It is worth noting that the differences among sample batches in such a study are a mixture of technical confounders caused by batch effect and biological variations caused by condition effect. However, current batch effect removal methods often eliminate both technical batch effect and meaningful condition effect, while perturbation prediction methods solely focus on condition effect, resulting in inaccurate gene expression predictions due to unaccounted batch effect. Here we introduce scDisInFact, a deep learning framework that models both batch effect and condition effect in scRNA-seq data. scDisInFact learns latent factors that disentangle condition effect from batch effect, enabling it to simultaneously perform three tasks: batch effect removal, condition-associated key gene detection, and perturbation prediction. We evaluate scDisInFact on both simulated and real datasets, and compare its performance with baseline methods for each task. Our results demonstrate that scDisInFact outperforms existing methods that focus on individual tasks, providing a more comprehensive and accurate approach for integrating and predicting multi-batch multi-condition single-cell RNA-sequencing data.

Suggested Citation

  • Ziqi Zhang & Xinye Zhao & Mehak Bindra & Peng Qiu & Xiuwei Zhang, 2024. "scDisInFact: disentangled learning for integration and prediction of multi-batch multi-condition single-cell RNA-sequencing data," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45227-w
    DOI: 10.1038/s41467-024-45227-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-45227-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-45227-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiuwei Zhang & Chenling Xu & Nir Yosef, 2019. "Simulating multiple faceted variability in single cell RNA sequencing," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    2. Gökcen Eraslan & Lukas M. Simon & Maria Mircea & Nikola S. Mueller & Fabian J. Theis, 2019. "Single-cell RNA-seq denoising using a deep count autoencoder," Nature Communications, Nature, vol. 10(1), pages 1-14, December.
    3. David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingfei Wang, 2021. "Single-cell normalization and association testing unifying CRISPR screen and gene co-expression analyses with Normalisr," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    2. Xiang Lin & Tian Tian & Zhi Wei & Hakon Hakonarson, 2022. "Clustering of single-cell multi-omics data with a multimodal deep learning method," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Shen Liu & Hongyan Liu, 2021. "Tagging Items Automatically Based on Both Content Information and Browsing Behaviors," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 882-897, July.
    4. Ethan Bahl & Snehajyoti Chatterjee & Utsav Mukherjee & Muhammad Elsadany & Yann Vanrobaeys & Li-Chun Lin & Miriam McDonough & Jon Resch & K. Peter Giese & Ted Abel & Jacob J. Michaelson, 2024. "Using deep learning to quantify neuronal activation from single-cell and spatial transcriptomic data," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    5. Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022. "Fast and accurate variational inference for models with many latent variables," Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
    6. Xing Qin & Shuangge Ma & Mengyun Wu, 2023. "Two‐level Bayesian interaction analysis for survival data incorporating pathway information," Biometrics, The International Biometric Society, vol. 79(3), pages 1761-1774, September.
    7. Youngseon Lee & Seongil Jo & Jaeyong Lee, 2022. "A variational inference for the Lévy adaptive regression with multiple kernels," Computational Statistics, Springer, vol. 37(5), pages 2493-2515, November.
    8. Nathaniel Tomasetti & Catherine Forbes & Anastasios Panagiotelis, 2019. "Updating Variational Bayes: Fast Sequential Posterior Inference," Monash Econometrics and Business Statistics Working Papers 13/19, Monash University, Department of Econometrics and Business Statistics.
    9. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    10. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Ho, Paul, 2023. "Global robust Bayesian analysis in large models," Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
    12. Liang, Xinbin & Liu, Zhuoxuan & Wang, Jie & Jin, Xinqiao & Du, Zhimin, 2023. "Uncertainty quantification-based robust deep learning for building energy systems considering distribution shift problem," Applied Energy, Elsevier, vol. 337(C).
    13. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    14. Seokhyun Chung & Raed Al Kontar & Zhenke Wu, 2022. "Weakly Supervised Multi-output Regression via Correlated Gaussian Processes," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 115-137, October.
    15. Gary Koop & Dimitris Korobilis, 2023. "Bayesian Dynamic Variable Selection In High Dimensions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
    16. Dimitris Korobilis & Davide Pettenuzzo, 2020. "Machine Learning Econometrics: Bayesian algorithms and methods," Working Papers 2020_09, Business School - Economics, University of Glasgow.
    17. Nicolae Sapoval & Amirali Aghazadeh & Michael G. Nute & Dinler A. Antunes & Advait Balaji & Richard Baraniuk & C. J. Barberan & Ruth Dannenfelser & Chen Dun & Mohammadamin Edrisi & R. A. Leo Elworth &, 2022. "Current progress and open challenges for applying deep learning across the biosciences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    18. Thayer Alshaabi & David R Dewhurst & James P Bagrow & Peter S Dodds & Christopher M Danforth, 2021. "The sociospatial factors of death: Analyzing effects of geospatially-distributed variables in a Bayesian mortality model for Hong Kong," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-20, March.
    19. Bansal, Prateek & Krueger, Rico & Graham, Daniel J., 2021. "Fast Bayesian estimation of spatial count data models," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    20. Rogelio A. Mancisidor & Kjersti Aas, 2022. "Multimodal Generative Models for Bankruptcy Prediction Using Textual Data," Papers 2211.08405, arXiv.org, revised Feb 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-45227-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.