Author
Listed:
- Yicheng Gao
(Tongji University
Tongji University
Ministry of Education
Microsoft Research Asia)
- Kejing Dong
(Tongji University
Tongji University)
- Caihua Shan
(Microsoft Research Asia)
- Dongsheng Li
(Microsoft Research Asia)
- Qi Liu
(Tongji University
Tongji University
Ministry of Education
Tongji University)
Abstract
Conducting disentanglement learning on single-cell omics data offers a promising alternative to traditional black-box representation learning by separating the semantic concepts embedded in a biological process. We present CausCell, which incorporates the factual information about causal relationships among disentangled concepts within a diffusion model to generate more reliable disentangled cellular representations, with the aim of increasing the explainability, generalizability and controllability of single-cell data, including spatial-temporal omics data, relative to those of the existing black-box representation learning models. Two quantitative evaluation scenarios, i.e., disentanglement and reconstruction, are presented to conduct the first comprehensive single-cell disentanglement learning benchmark, which demonstrates that CausCell outperforms the state-of-the-art methods in both scenarios. Additionally, CausCell can implement controllable generation by intervening with the concepts of single-cell data when given a causal structure. It also has the potential to uncover biological insights by generating counterfactuals from small and noisy single-cell datasets.
Suggested Citation
Yicheng Gao & Kejing Dong & Caihua Shan & Dongsheng Li & Qi Liu, 2025.
"Causal disentanglement for single-cell representations and controllable counterfactual generation,"
Nature Communications, Nature, vol. 16(1), pages 1-12, December.
Handle:
RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62008-1
DOI: 10.1038/s41467-025-62008-1
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-62008-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.