IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics036054422401199x.html
   My bibliography  Save this article

Energy utilization of takeaway waste: Components separation and fuel preparation employing hydrothermal carbonization and gasification

Author

Listed:
  • Zeng, Mingxun
  • Ge, Zefeng
  • Wu, Yuqing
  • Ma, Yuna
  • Zha, Zhenting
  • Hou, Zenghui
  • Zhang, Huiyan

Abstract

Takeaway waste, which mainly consists of waste plastics and food residues, has increased dramatically and needs effective disposal nowadays. Considering the high moisture of food residues and significant density difference between food and plastic, hydrothermal carbonization (HTC) was proposed to realize the separation of plastics while upgrading food residues into hydrochar. In this study, plastic tube and cooked rice were studied as typical representatives of takeaway waste. The high heating value (HHV) of hydrochar can reach up to 26.48 MJ/kg which can be used as alternative fuel and whose combustion process was more stable compared to raw material. Due to polymer property, plastic tube only underwent a physical melt-condensation process during HTC and turned into a lump carrying hydrochar inside and outside, which could be separated at the filtration stage. By co-gasification with corn straw, the separated plastic lump can be converted into syngas, optimally with HHV of 17.40 MJ/Nm3 and yield of 0.75 L/gfeedstock. The hydrochar carried by the plastic lump enhanced its co-gasification process with corn straw, leading to a synergistic effect. The energy utilization of takeaway waste was achieved successfully employing HTC and gasification which could provide a new idea for waste disposal and fuel preparation.

Suggested Citation

  • Zeng, Mingxun & Ge, Zefeng & Wu, Yuqing & Ma, Yuna & Zha, Zhenting & Hou, Zenghui & Zhang, Huiyan, 2024. "Energy utilization of takeaway waste: Components separation and fuel preparation employing hydrothermal carbonization and gasification," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s036054422401199x
    DOI: 10.1016/j.energy.2024.131426
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422401199X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s036054422401199x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.