IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics0360544224011344.html
   My bibliography  Save this article

Performance evaluation of linear variable valve actuation for a linear engine generator

Author

Listed:
  • Li, Mingqiang
  • Ngwaka, Ugochukwu
  • Wu, Dawei
  • Wang, Zhongcheng
  • Korbekandi, Ramin Moeini
  • Baker, Nick
  • Tsolakis, Athanasios

Abstract

The Joule cycle Linear Engine Generator (LEG) is a promising power generation technology with the potential to achieve zero carbon emissions. However, the LEG expander valve actuation system presents unique challenges due to its lack of a traditional crankshaft, the need for swift valve lift and reversal, and variable lift. This paper presents a Linear Variable Valve Actuation (LVVA) system for a LEG prototype. The LVVA system is powered by voice coil motors. Rigorous experimental investigations were conducted to analyze crucial performance factors, including energy consumption, force balance, energy flow distribution, and the relationship between valve lift duration and energy consumption. The results show that the LVVA system can achieve the desired valve lift and timing, as well as very small variations in LEG performance compared to the model using an ideal lift curve. The LVVA accounts for approximately 3.59 % of the LEG power output. The energy consumption of 1.607 J per valve stroke provides a slight advantage over traditional actuation systems. The obtained optimal lift curves were used to refine the LEG model. The influence of valve lift curves on LEG performance was evaluated which reveals rapid valve openings and relatively short duration contributing to improved LEG performance.

Suggested Citation

  • Li, Mingqiang & Ngwaka, Ugochukwu & Wu, Dawei & Wang, Zhongcheng & Korbekandi, Ramin Moeini & Baker, Nick & Tsolakis, Athanasios, 2024. "Performance evaluation of linear variable valve actuation for a linear engine generator," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011344
    DOI: 10.1016/j.energy.2024.131361
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011344
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.