IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v157y2015icp798-804.html
   My bibliography  Save this article

An experimental investigation into the starting process of free-piston engine generator

Author

Listed:
  • Jia, Boru
  • Tian, Guohong
  • Feng, Huihua
  • Zuo, Zhengxing
  • Roskilly, A.P.

Abstract

This paper presents an experimental investigation of the starting process of a prototype free piston engine generator (FPEG). Experimental test results show that during the motoring stage, the peak in-cylinder pressure and compression ratio increase in a non-linear manner and trend to reach a stable state after a number of cycles. The motoring force is suggested to be within a reasonable range. With a fixed starting force of 125N, the in-cylinder air fuel mixture was successfully ignited at the fourth cycle with a compression ratio of over 9:1. The peak in-cylinder pressure for the first combustion cycle reached over 40bar. The piston ran at high and relatively constant speed at the middle portion of the stroke. The peak piston velocity increases significantly to around 4.0m/s. Cycle-to-cycle variation of the piston movement was significant and the engine misfired frequently. During the misfire cycles, the peak piston velocity decreased to nearly 2.5m/s; and the piston dynamics were similar to the motoring process. Based on these, discussion on misfire and further stable running control, as well as the linear electric machine mode switch were presented.

Suggested Citation

  • Jia, Boru & Tian, Guohong & Feng, Huihua & Zuo, Zhengxing & Roskilly, A.P., 2015. "An experimental investigation into the starting process of free-piston engine generator," Applied Energy, Elsevier, vol. 157(C), pages 798-804.
  • Handle: RePEc:eee:appene:v:157:y:2015:i:c:p:798-804
    DOI: 10.1016/j.apenergy.2015.02.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915002500
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.02.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mikalsen, R. & Roskilly, A.P., 2010. "The control of a free-piston engine generator. Part 1: Fundamental analyses," Applied Energy, Elsevier, vol. 87(4), pages 1273-1280, April.
    2. Mikalsen, R. & Jones, E. & Roskilly, A.P., 2010. "Predictive piston motion control in a free-piston internal combustion engine," Applied Energy, Elsevier, vol. 87(5), pages 1722-1728, May.
    3. Mao, Jinlong & Zuo, Zhengxing & Feng, Huihua, 2011. "Parameters coupling designation of diesel free-piston linear alternator," Applied Energy, Elsevier, vol. 88(12), pages 4577-4589.
    4. Zhao, Zhenfeng & Zhang, Fujun & Huang, Ying & Zhao, Changlu & Guo, Feng, 2012. "An experimental study of the hydraulic free piston engine," Applied Energy, Elsevier, vol. 99(C), pages 226-233.
    5. Mikalsen, R. & Roskilly, A.P., 2010. "The control of a free-piston engine generator. Part 2: Engine dynamics and piston motion control," Applied Energy, Elsevier, vol. 87(4), pages 1281-1287, April.
    6. Xiao, Jin & Li, Qingfeng & Huang, Zhen, 2010. "Motion characteristic of a free piston linear engine," Applied Energy, Elsevier, vol. 87(4), pages 1288-1294, April.
    7. Mao, Jinlong & Zuo, Zhengxing & Li, Wen & Feng, Huihua, 2011. "Multi-dimensional scavenging analysis of a free-piston linear alternator based on numerical simulation," Applied Energy, Elsevier, vol. 88(4), pages 1140-1152, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Sun & Chi Zhang & Jinhua Chen & Fei Zhao & Youyong Liao & Guilin Yang & Chinyin Chen, 2016. "Decoupling Design and Verification of a Free-Piston Linear Generator," Energies, MDPI, vol. 9(12), pages 1-23, December.
    2. Mao, Jinlong & Zuo, Zhengxing & Feng, Huihua, 2011. "Parameters coupling designation of diesel free-piston linear alternator," Applied Energy, Elsevier, vol. 88(12), pages 4577-4589.
    3. Hung, Nguyen Ba & Lim, Ocktaeck, 2016. "A review of free-piston linear engines," Applied Energy, Elsevier, vol. 178(C), pages 78-97.
    4. Wang, Yaodong & Chen, Lin & Jia, Boru & Roskilly, Anthony Paul, 2017. "Experimental study of the operation characteristics of an air-driven free-piston linear expander," Applied Energy, Elsevier, vol. 195(C), pages 93-99.
    5. Peng Sun & Chi Zhang & Jinhua Chen & Fei Zhao & Youyong Liao & Guilin Yang & Chinyin Chen, 2017. "Hybrid System Modeling and Full Cycle Operation Analysis of a Two-Stroke Free-Piston Linear Generator," Energies, MDPI, vol. 10(2), pages 1-23, February.
    6. Huihua Feng & Yu Song & Zhengxing Zuo & Jiao Shang & Yaodong Wang & Anthony Paul Roskilly, 2015. "Stable Operation and Electricity Generating Characteristics of a Single-Cylinder Free Piston Engine Linear Generator: Simulation and Experiments," Energies, MDPI, vol. 8(2), pages 1-21, January.
    7. Zhang, Zhiyuan & Feng, Huihua & Jia, Boru & Zuo, Zhengxing & Yan, Xiaodong & Smallbone, Andrew & Roskilly, Anthony Paul, 2022. "Identification and analysis on the variation sources of a dual-cylinder free piston engine generator and their influence on system operating characteristics," Energy, Elsevier, vol. 242(C).
    8. Guo, Chendong & Zuo, Zhengxing & Feng, Huihua & Jia, Boru & Roskilly, Tony, 2020. "Review of recent advances of free-piston internal combustion engine linear generator," Applied Energy, Elsevier, vol. 269(C).
    9. Feng, Huihua & Guo, Chendong & Yuan, Chenheng & Guo, Yuyao & Zuo, Zhengxing & Roskilly, Anthony Paul & Jia, Boru, 2016. "Research on combustion process of a free piston diesel linear generator," Applied Energy, Elsevier, vol. 161(C), pages 395-403.
    10. Lim, Ocktaeck & Hung, Nguyen Ba & Oh, Seokyoung & Kim, Gangchul & Song, Hanho & Iida, Norimasa, 2015. "A study of operating parameters on the linear spark ignition engine," Applied Energy, Elsevier, vol. 160(C), pages 746-760.
    11. Li, Jian & Zuo, Zhengxing & Liu, Wenzhen & Jia, Boru & Feng, Huihua & Wang, Wei & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Generating performance of a tubular permanent magnet linear generator for application on free-piston engine generator prototype with wide-ranging operating parameters," Energy, Elsevier, vol. 278(C).
    12. Huihua Feng & Yuyao Guo & Yu Song & Chendong Guo & Zhengxing Zuo, 2016. "Study of the Injection Control Strategies of a Compression Ignition Free Piston Engine Linear Generator in a One-Stroke Starting Process," Energies, MDPI, vol. 9(6), pages 1-19, June.
    13. Zhu, Yongsheng & Wang, Yang & Zhen, Xudong & Guan, Shuai & Wang, Jiancai & Wu, Yining & Chen, Yujin & Yin, Shujun, 2014. "The control of an opposed hydraulic free piston engine," Applied Energy, Elsevier, vol. 126(C), pages 213-220.
    14. Alagumalai, Avinash, 2014. "Internal combustion engines: Progress and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 561-571.
    15. Jia, Boru & Smallbone, Andrew & Feng, Huihua & Tian, Guohong & Zuo, Zhengxing & Roskilly, A.P., 2016. "A fast response free-piston engine generator numerical model for control applications," Applied Energy, Elsevier, vol. 162(C), pages 321-329.
    16. Zhang, Shuanlu & Zhao, Changlu & Zhao, Zhenfeng, 2015. "Stability analysis of hydraulic free piston engine," Applied Energy, Elsevier, vol. 157(C), pages 805-813.
    17. Zhang, Chen & Sun, Zongxuan, 2016. "Using variable piston trajectory to reduce engine-out emissions," Applied Energy, Elsevier, vol. 170(C), pages 403-414.
    18. Yuan, Chenheng & Feng, Huihua & He, Yituan & Xu, Jing, 2016. "Combustion characteristics analysis of a free-piston engine generator coupling with dynamic and scavenging," Energy, Elsevier, vol. 102(C), pages 637-649.
    19. Ziwei Zhang & Huihua Feng & Zhengxing Zuo, 2020. "Numerical Investigation of a Free-Piston Hydrogen-Gasoline Engine Linear Generator," Energies, MDPI, vol. 13(18), pages 1-16, September.
    20. Jia, Boru & Smallbone, Andrew & Mikalsen, Rikard & Feng, Huihua & Zuo, Zhengxing & Roskilly, Anthony Paul, 2017. "Disturbance analysis of a free-piston engine generator using a validated fast-response numerical model," Applied Energy, Elsevier, vol. 185(P1), pages 440-451.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:157:y:2015:i:c:p:798-804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.