IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i2p765-785d45070.html
   My bibliography  Save this article

Stable Operation and Electricity Generating Characteristics of a Single-Cylinder Free Piston Engine Linear Generator: Simulation and Experiments

Author

Listed:
  • Huihua Feng

    (School of Mechanical Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China)

  • Yu Song

    (School of Mechanical Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China)

  • Zhengxing Zuo

    (School of Mechanical Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China)

  • Jiao Shang

    (School of Mechanical Engineering, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Haidian District, Beijing 100081, China)

  • Yaodong Wang

    (Sir Joseph Swan Centre for Energy Research, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK)

  • Anthony Paul Roskilly

    (Sir Joseph Swan Centre for Energy Research, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK)

Abstract

We present a novel design of a single-cylinder free piston engine linear generator (FPELG) incorporating a linear motor as a rebound device. A systematic simulation model of this FPELG system was built containing a kinematic and dynamic model of the piston and mover, a magneto-electric model of the linear generator, a thermodynamic model of the single-cylinder engine, and a friction model between the piston ring and cylinder liner. Simulations were performed to understand the relationships between pre-set motor parameters and the running performance of the FPELG. From the simulation results, it was found that a motor rebound force with a parabolic profile had clear advantages over a force with a triangular profile, such as a higher running frequency and peak cylinder pressure, faster piston motion, etc. The rebound position and the amplitude of rebound force were also determined by simulations. The energy conversion characteristics of the generator were obtained from our FPELG test rig. The parameters of intake pressure, motor frequency, and load resistance were varied over certain ranges, and relationships among these three parameters were obtained. The electricity-generating characteristic parameters include output power and system efficiency, which can measure the quality of matching the controllable parameters. The output power can reach 25.9 W and the system efficiency can reach 13.7%. The results in terms of matching parameters and electricity-generating characteristics should be useful to future research in adapting these engines to various operating modes.

Suggested Citation

  • Huihua Feng & Yu Song & Zhengxing Zuo & Jiao Shang & Yaodong Wang & Anthony Paul Roskilly, 2015. "Stable Operation and Electricity Generating Characteristics of a Single-Cylinder Free Piston Engine Linear Generator: Simulation and Experiments," Energies, MDPI, vol. 8(2), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:2:p:765-785:d:45070
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/2/765/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/2/765/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mikalsen, R. & Roskilly, A.P., 2010. "The control of a free-piston engine generator. Part 1: Fundamental analyses," Applied Energy, Elsevier, vol. 87(4), pages 1273-1280, April.
    2. Zhu, Yongsheng & Wang, Yang & Zhen, Xudong & Guan, Shuai & Wang, Jiancai & Wu, Yining & Chen, Yujin & Yin, Shujun, 2014. "The control of an opposed hydraulic free piston engine," Applied Energy, Elsevier, vol. 126(C), pages 213-220.
    3. Mikalsen, R. & Jones, E. & Roskilly, A.P., 2010. "Predictive piston motion control in a free-piston internal combustion engine," Applied Energy, Elsevier, vol. 87(5), pages 1722-1728, May.
    4. Kim, Jaeheun & Bae, Choongsik & Kim, Gangchul, 2013. "Simulation on the effect of the combustion parameters on the piston dynamics and engine performance using the Wiebe function in a free piston engine," Applied Energy, Elsevier, vol. 107(C), pages 446-455.
    5. Mao, Jinlong & Zuo, Zhengxing & Feng, Huihua, 2011. "Parameters coupling designation of diesel free-piston linear alternator," Applied Energy, Elsevier, vol. 88(12), pages 4577-4589.
    6. Mikalsen, R. & Roskilly, A.P., 2010. "The control of a free-piston engine generator. Part 2: Engine dynamics and piston motion control," Applied Energy, Elsevier, vol. 87(4), pages 1281-1287, April.
    7. Chiang, Chia-Jui & Yang, Jing-Long & Lan, Shao-Ya & Shei, Tsung-Wei & Chiang, Wen-Shu & Chen, Bo-Liang, 2013. "Dynamic modeling of a SI/HCCI free-piston engine generator with electric mechanical valves," Applied Energy, Elsevier, vol. 102(C), pages 336-346.
    8. Mao, Jinlong & Zuo, Zhengxing & Li, Wen & Feng, Huihua, 2011. "Multi-dimensional scavenging analysis of a free-piston linear alternator based on numerical simulation," Applied Energy, Elsevier, vol. 88(4), pages 1140-1152, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ganesh, S. & Ali, G. & Moline, D. & Schweisinger, T. & Wagner, J., 2018. "Conversion of atmospheric variations into electric power – Design and analysis of an electric power generator system," Renewable Energy, Elsevier, vol. 120(C), pages 478-487.
    2. Yun Sun & Hongxin Zhang & Zhen Liang & Jian Yang, 2021. "Design Optimization of Electrodynamic Structure of Permanent Magnet Piston Mechanical Electric Engine," Energies, MDPI, vol. 14(19), pages 1-20, October.
    3. Yan Zhang & Zhengxing Zuo & Jinxiang Liu, 2015. "Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine," Energies, MDPI, vol. 8(8), pages 1-24, August.
    4. Ngwaka, Ugochukwu & Jia, Boru & Lawrence, Christopher & Wu, Dawei & Smallbone, Andrew & Roskilly, Anthony Paul, 2019. "The characteristics of a Linear Joule Engine Generator operating on a dry friction principle," Applied Energy, Elsevier, vol. 237(C), pages 49-59.
    5. Gaosheng Li & Hongguang Zhang & Fubin Yang & Songsong Song & Ying Chang & Fei Yu & Jingfu Wang & Baofeng Yao, 2016. "Preliminary Development of a Free Piston Expander–Linear Generator for Small-Scale Organic Rankine Cycle (ORC) Waste Heat Recovery System," Energies, MDPI, vol. 9(4), pages 1-18, April.
    6. Xuezhen Wang & Feixue Chen & Renfeng Zhu & Guilin Yang & Chi Zhang, 2018. "A Review of the Design and Control of Free-Piston Linear Generator," Energies, MDPI, vol. 11(8), pages 1-21, August.
    7. Peng Sun & Chi Zhang & Jinhua Chen & Fei Zhao & Youyong Liao & Guilin Yang & Chinyin Chen, 2016. "Decoupling Design and Verification of a Free-Piston Linear Generator," Energies, MDPI, vol. 9(12), pages 1-23, December.
    8. Hung, Nguyen Ba & Lim, Ocktaeck, 2016. "A review of free-piston linear engines," Applied Energy, Elsevier, vol. 178(C), pages 78-97.
    9. Boru Jia & Zhengxing Zuo & Andrew Smallbone & Huihua Feng & Anthony Paul Roskilly, 2017. "A Decoupled Design Parameter Analysis for Free-Piston Engine Generators," Energies, MDPI, vol. 10(4), pages 1-14, April.
    10. Ahsan Bashir & Saiful A. Zulkifli & Abd Rashid Abd Aziz & Ezrann ZZ Abidin, 2021. "Impact of Combustion Variance on Sustainability of Free-Piston Linear Generator during Steady-State Generation," Energies, MDPI, vol. 14(14), pages 1-21, July.
    11. Gao, Yuping & Shao, Shuangquan & Zou, Huiming & Tang, Mingsheng & Xu, Hongbo & Tian, Changqing, 2016. "A fully floating system for a wave energy converter with direct-driven linear generator," Energy, Elsevier, vol. 95(C), pages 99-109.
    12. Yuxi Miao & Zhengxing Zuo & Huihua Feng & Chendong Guo & Yu Song & Boru Jia & Yuyao Guo, 2016. "Research on the Combustion Characteristics of a Free-Piston Gasoline Engine Linear Generator during the Stable Generating Process," Energies, MDPI, vol. 9(8), pages 1-19, August.
    13. Chi Zhang & Feixue Chen & Long Li & Zhaoping Xu & Liang Liu & Guilin Yang & Hongyuan Lian & Yingzhong Tian, 2018. "A Free-Piston Linear Generator Control Strategy for Improving Output Power," Energies, MDPI, vol. 11(1), pages 1-21, January.
    14. Huihua Feng & Yuyao Guo & Yu Song & Chendong Guo & Zhengxing Zuo, 2016. "Study of the Injection Control Strategies of a Compression Ignition Free Piston Engine Linear Generator in a One-Stroke Starting Process," Energies, MDPI, vol. 9(6), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng Sun & Chi Zhang & Jinhua Chen & Fei Zhao & Youyong Liao & Guilin Yang & Chinyin Chen, 2016. "Decoupling Design and Verification of a Free-Piston Linear Generator," Energies, MDPI, vol. 9(12), pages 1-23, December.
    2. Hung, Nguyen Ba & Lim, Ocktaeck, 2016. "A review of free-piston linear engines," Applied Energy, Elsevier, vol. 178(C), pages 78-97.
    3. Lim, Ocktaeck & Hung, Nguyen Ba & Oh, Seokyoung & Kim, Gangchul & Song, Hanho & Iida, Norimasa, 2015. "A study of operating parameters on the linear spark ignition engine," Applied Energy, Elsevier, vol. 160(C), pages 746-760.
    4. Jia, Boru & Tian, Guohong & Feng, Huihua & Zuo, Zhengxing & Roskilly, A.P., 2015. "An experimental investigation into the starting process of free-piston engine generator," Applied Energy, Elsevier, vol. 157(C), pages 798-804.
    5. Peng Sun & Chi Zhang & Jinhua Chen & Fei Zhao & Youyong Liao & Guilin Yang & Chinyin Chen, 2017. "Hybrid System Modeling and Full Cycle Operation Analysis of a Two-Stroke Free-Piston Linear Generator," Energies, MDPI, vol. 10(2), pages 1-23, February.
    6. Jia, Boru & Smallbone, Andrew & Feng, Huihua & Tian, Guohong & Zuo, Zhengxing & Roskilly, A.P., 2016. "A fast response free-piston engine generator numerical model for control applications," Applied Energy, Elsevier, vol. 162(C), pages 321-329.
    7. Guo, Chendong & Zuo, Zhengxing & Feng, Huihua & Jia, Boru & Roskilly, Tony, 2020. "Review of recent advances of free-piston internal combustion engine linear generator," Applied Energy, Elsevier, vol. 269(C).
    8. Feng, Huihua & Guo, Chendong & Yuan, Chenheng & Guo, Yuyao & Zuo, Zhengxing & Roskilly, Anthony Paul & Jia, Boru, 2016. "Research on combustion process of a free piston diesel linear generator," Applied Energy, Elsevier, vol. 161(C), pages 395-403.
    9. Mao, Jinlong & Zuo, Zhengxing & Feng, Huihua, 2011. "Parameters coupling designation of diesel free-piston linear alternator," Applied Energy, Elsevier, vol. 88(12), pages 4577-4589.
    10. Ziwei Zhang & Huihua Feng & Zhengxing Zuo, 2020. "Numerical Investigation of a Free-Piston Hydrogen-Gasoline Engine Linear Generator," Energies, MDPI, vol. 13(18), pages 1-16, September.
    11. Wang, Yaodong & Chen, Lin & Jia, Boru & Roskilly, Anthony Paul, 2017. "Experimental study of the operation characteristics of an air-driven free-piston linear expander," Applied Energy, Elsevier, vol. 195(C), pages 93-99.
    12. Zhao, Xiaohuan & Liu, Fang & Wang, Chunhua, 2022. "Effects of different piston combustion chamber heights on heat transfer and energy conversion performance enhancement of a heavy-duty truck diesel engine," Energy, Elsevier, vol. 249(C).
    13. Huihua Feng & Yuyao Guo & Yu Song & Chendong Guo & Zhengxing Zuo, 2016. "Study of the Injection Control Strategies of a Compression Ignition Free Piston Engine Linear Generator in a One-Stroke Starting Process," Energies, MDPI, vol. 9(6), pages 1-19, June.
    14. Zhang, Zhiyuan & Feng, Huihua & Jia, Boru & Zuo, Zhengxing & Yan, Xiaodong & Smallbone, Andrew & Roskilly, Anthony Paul, 2022. "Identification and analysis on the variation sources of a dual-cylinder free piston engine generator and their influence on system operating characteristics," Energy, Elsevier, vol. 242(C).
    15. Xuezhen Wang & Feixue Chen & Renfeng Zhu & Guilin Yang & Chi Zhang, 2018. "A Review of the Design and Control of Free-Piston Linear Generator," Energies, MDPI, vol. 11(8), pages 1-21, August.
    16. Jia, Boru & Mikalsen, Rikard & Smallbone, Andrew & Zuo, Zhengxing & Feng, Huihua & Roskilly, Anthony Paul, 2016. "Piston motion control of a free-piston engine generator: A new approach using cascade control," Applied Energy, Elsevier, vol. 179(C), pages 1166-1175.
    17. Zhang, Shuanlu & Zhao, Changlu & Zhao, Zhenfeng, 2015. "Stability analysis of hydraulic free piston engine," Applied Energy, Elsevier, vol. 157(C), pages 805-813.
    18. Li, Jian & Zuo, Zhengxing & Liu, Wenzhen & Jia, Boru & Feng, Huihua & Wang, Wei & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Generating performance of a tubular permanent magnet linear generator for application on free-piston engine generator prototype with wide-ranging operating parameters," Energy, Elsevier, vol. 278(C).
    19. Yuan, Chenheng & Feng, Huihua & He, Yituan & Xu, Jing, 2016. "Combustion characteristics analysis of a free-piston engine generator coupling with dynamic and scavenging," Energy, Elsevier, vol. 102(C), pages 637-649.
    20. Jia, Boru & Zuo, Zhengxing & Feng, Huihua & Tian, Guohong & Smallbone, Andrew & Roskilly, A.P., 2016. "Effect of closed-loop controlled resonance based mechanism to start free piston engine generator: Simulation and test results," Applied Energy, Elsevier, vol. 164(C), pages 532-539.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:2:p:765-785:d:45070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.