IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4081-d589716.html
   My bibliography  Save this article

Impact of Combustion Variance on Sustainability of Free-Piston Linear Generator during Steady-State Generation

Author

Listed:
  • Ahsan Bashir

    (Electrical & Electronics Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia)

  • Saiful A. Zulkifli

    (Electrical & Electronics Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia)

  • Abd Rashid Abd Aziz

    (Mechanical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia)

  • Ezrann ZZ Abidin

    (Centre for Automotive Research and Electric Mobility, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia)

Abstract

A free-piston linear generator (FPLG) has a number of advantages compared to a traditional crank-slider internal combustion engine, including better thermal and mechanical efficiencies, different fuel compatibility, and a higher power-to-weight ratio. For electric vehicle propulsion and generation of portable power, an FPLG is a very attractive alternative source of energy. This paper presents the development of an FPLG simulation model using MATLAB-Simulink and investigates the impact of combustion variance on its operation. Results provided insight into various characteristics of system behavior through variation of structural dimension and operational parameters. In steady-state operation with fixed electrical load and fixed ignition for combustion, it was found that consecutively low combustion pressures can easily lead to engine stoppage, pointing to the significance of control for continuous operation. Due to the absence of the moment of inertia and flywheel character of the rotating engine, a linear engine-generator is subject to ceased operation even after two consecutively low combustions under 10% variance. This will not be a fundamental problem in an ordinary crank-slider engine-generator, but in a linear engine-generator, control measure will be necessary to ensure sustained operation.

Suggested Citation

  • Ahsan Bashir & Saiful A. Zulkifli & Abd Rashid Abd Aziz & Ezrann ZZ Abidin, 2021. "Impact of Combustion Variance on Sustainability of Free-Piston Linear Generator during Steady-State Generation," Energies, MDPI, vol. 14(14), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4081-:d:589716
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4081/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4081/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Faisal Masood & Perumal Nallagownden & Irraivan Elamvazuthi & Javed Akhter & Mohammad Azad Alam, 2021. "A New Approach for Design Optimization and Parametric Analysis of Symmetric Compound Parabolic Concentrator for Photovoltaic Applications," Sustainability, MDPI, vol. 13(9), pages 1-25, April.
    2. Huihua Feng & Yu Song & Zhengxing Zuo & Jiao Shang & Yaodong Wang & Anthony Paul Roskilly, 2015. "Stable Operation and Electricity Generating Characteristics of a Single-Cylinder Free Piston Engine Linear Generator: Simulation and Experiments," Energies, MDPI, vol. 8(2), pages 1-21, January.
    3. Hung, Nguyen Ba & Lim, Ocktaeck, 2016. "A review of free-piston linear engines," Applied Energy, Elsevier, vol. 178(C), pages 78-97.
    4. Mikalsen, R. & Roskilly, A.P., 2010. "The control of a free-piston engine generator. Part 2: Engine dynamics and piston motion control," Applied Energy, Elsevier, vol. 87(4), pages 1281-1287, April.
    5. Chi Zhang & Feixue Chen & Long Li & Zhaoping Xu & Liang Liu & Guilin Yang & Hongyuan Lian & Yingzhong Tian, 2018. "A Free-Piston Linear Generator Control Strategy for Improving Output Power," Energies, MDPI, vol. 11(1), pages 1-21, January.
    6. Jihwan Jang & Jonghui Choi & Hoseung Yi & Sungwook Park, 2020. "Effects of the Bore to Stroke Ratio on Combustion, Gaseous and Particulate Emissions in a Small Port Fuel Injection Engine Fueled with Ethanol Blended Gasoline," Energies, MDPI, vol. 13(2), pages 1-15, January.
    7. Xuezhen Wang & Feixue Chen & Renfeng Zhu & Guilin Yang & Chi Zhang, 2018. "A Review of the Design and Control of Free-Piston Linear Generator," Energies, MDPI, vol. 11(8), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jian & Zuo, Zhengxing & Jia, Boru & Feng, Huihua & Mei, Bingang & Smallbone, Andrew & Roskilly, Anthony Paul, 2024. "Operating characteristics and design parameter optimization of permanent magnet linear generator applied to free-piston energy converter," Energy, Elsevier, vol. 287(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuezhen Wang & Feixue Chen & Renfeng Zhu & Guilin Yang & Chi Zhang, 2018. "A Review of the Design and Control of Free-Piston Linear Generator," Energies, MDPI, vol. 11(8), pages 1-21, August.
    2. Li, Jian & Zuo, Zhengxing & Liu, Wenzhen & Jia, Boru & Feng, Huihua & Wang, Wei & Smallbone, Andrew & Roskilly, Anthony Paul, 2023. "Generating performance of a tubular permanent magnet linear generator for application on free-piston engine generator prototype with wide-ranging operating parameters," Energy, Elsevier, vol. 278(C).
    3. Chi Zhang & Feixue Chen & Long Li & Zhaoping Xu & Liang Liu & Guilin Yang & Hongyuan Lian & Yingzhong Tian, 2018. "A Free-Piston Linear Generator Control Strategy for Improving Output Power," Energies, MDPI, vol. 11(1), pages 1-21, January.
    4. Peng Sun & Chi Zhang & Jinhua Chen & Fei Zhao & Youyong Liao & Guilin Yang & Chinyin Chen, 2016. "Decoupling Design and Verification of a Free-Piston Linear Generator," Energies, MDPI, vol. 9(12), pages 1-23, December.
    5. Zhang, Yan & Yang, Binbin & Ji, Deliang & Hou, Xiaochen & Zhao, Bo & Zhang, Tiezhu, 2023. "Integrated simulation and performance analysis of Confined Piston Linear Generator (CPLG)," Energy, Elsevier, vol. 282(C).
    6. Hung, Nguyen Ba & Lim, Ocktaeck, 2016. "A review of free-piston linear engines," Applied Energy, Elsevier, vol. 178(C), pages 78-97.
    7. Ngwaka, Ugochukwu & Jia, Boru & Lawrence, Christopher & Wu, Dawei & Smallbone, Andrew & Roskilly, Anthony Paul, 2019. "The characteristics of a Linear Joule Engine Generator operating on a dry friction principle," Applied Energy, Elsevier, vol. 237(C), pages 49-59.
    8. Zhao, Xiaohuan & Liu, Fang & Wang, Chunhua, 2022. "Effects of different piston combustion chamber heights on heat transfer and energy conversion performance enhancement of a heavy-duty truck diesel engine," Energy, Elsevier, vol. 249(C).
    9. Yuan, Chenheng & Lu, Jiangchuan & Li, Shilei, 2023. "Thermoelectric coupling effect of secondary injection on gasoline fuel spray and mixing of a free vibration combustion alternator," Energy, Elsevier, vol. 281(C).
    10. Huihua Feng & Yuyao Guo & Yu Song & Chendong Guo & Zhengxing Zuo, 2016. "Study of the Injection Control Strategies of a Compression Ignition Free Piston Engine Linear Generator in a One-Stroke Starting Process," Energies, MDPI, vol. 9(6), pages 1-19, June.
    11. Yun Sun & Hongxin Zhang & Zhen Liang & Jian Yang, 2021. "Design Optimization of Electrodynamic Structure of Permanent Magnet Piston Mechanical Electric Engine," Energies, MDPI, vol. 14(19), pages 1-20, October.
    12. Zhang, Zhiyuan & Feng, Huihua & Jia, Boru & Zuo, Zhengxing & Yan, Xiaodong & Smallbone, Andrew & Roskilly, Anthony Paul, 2022. "Identification and analysis on the variation sources of a dual-cylinder free piston engine generator and their influence on system operating characteristics," Energy, Elsevier, vol. 242(C).
    13. Guo, Chendong & Zuo, Zhengxing & Feng, Huihua & Jia, Boru & Roskilly, Tony, 2020. "Review of recent advances of free-piston internal combustion engine linear generator," Applied Energy, Elsevier, vol. 269(C).
    14. Zhang, Chen & Sun, Zongxuan, 2017. "Trajectory-based combustion control for renewable fuels in free piston engines," Applied Energy, Elsevier, vol. 187(C), pages 72-83.
    15. Mao, Jinlong & Zuo, Zhengxing & Feng, Huihua, 2011. "Parameters coupling designation of diesel free-piston linear alternator," Applied Energy, Elsevier, vol. 88(12), pages 4577-4589.
    16. Chen, Ruihua & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Xu, Weicong, 2021. "A cycle research methodology for thermo-chemical engines: From ideal cycle to case study," Energy, Elsevier, vol. 228(C).
    17. Dmitry Petrichenko & Alexey Tatarnikov & Igor Papkin, 2015. "Approach to Electromagnetic Control of the Extreme Positions of a Piston in a Free Piston Generator," Modern Applied Science, Canadian Center of Science and Education, vol. 9(1), pages 119-119, January.
    18. Najjar, Yousef S.H., 2011. "Comparison of performance of a Greener direct-injection stratified-charge (DISC) engine with a spark-ignition engine using a simplified model," Energy, Elsevier, vol. 36(7), pages 4136-4143.
    19. Lim, Ocktaeck & Hung, Nguyen Ba & Oh, Seokyoung & Kim, Gangchul & Song, Hanho & Iida, Norimasa, 2015. "A study of operating parameters on the linear spark ignition engine," Applied Energy, Elsevier, vol. 160(C), pages 746-760.
    20. Jia, Boru & Tian, Guohong & Feng, Huihua & Zuo, Zhengxing & Roskilly, A.P., 2015. "An experimental investigation into the starting process of free-piston engine generator," Applied Energy, Elsevier, vol. 157(C), pages 798-804.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4081-:d:589716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.