IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2657-d247379.html
   My bibliography  Save this article

Performance Analysis of a Flexi-Fuel Turbine-Combined Free-Piston Engine Generator

Author

Listed:
  • Boru Jia

    (Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
    Beijing Institute of Technology, School of Mechanical Engineering, Beijing 100081, China)

  • Andrew Smallbone

    (Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK)

  • Rikard Mikalsen

    (Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK)

  • K.V. Shivaprasad

    (Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK)

  • Sumit Roy

    (Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK)

  • Anthony Paul Roskilly

    (Sir Joseph Swan Centre for Energy Research, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK)

Abstract

The turbine-combined free-piston engine generator (TCFPEG) is a hybrid machine, generating both mechanical work from the gas turbine and electricity from the linear electric generator for battery charging. In the present study, the system performance of the designed TCFPEG system is predicted using a validated numerical model. A parametric analysis is undertaken based on the influence of the engine load, valve timing, the number of linear generators adopted, and different fuels on the system performance. It is found that when linear electric generators are connected with the free-piston gas turbine, the bottom dead centre, the peak piston velocity, and engine operation frequency are all reduced. Very minimal difference on the in-cylinder pressure and the compressor pressure is observed, while the peak pressure in the bounce chamber is reduced. When coupled with a linear electric generator, the system efficiency can be improved to nearly 50% by optimising engine load and the number of the linear generators adopted in the TCFPEG system. The system is able to be operated with different fuels as the piston is not limited by a mechanical system; the output power and system efficiency are highest when hydrogen is used as the fuel.

Suggested Citation

  • Boru Jia & Andrew Smallbone & Rikard Mikalsen & K.V. Shivaprasad & Sumit Roy & Anthony Paul Roskilly, 2019. "Performance Analysis of a Flexi-Fuel Turbine-Combined Free-Piston Engine Generator," Energies, MDPI, vol. 12(14), pages 1-22, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2657-:d:247379
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2657/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2657/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jia, Boru & Tian, Guohong & Feng, Huihua & Zuo, Zhengxing & Roskilly, A.P., 2015. "An experimental investigation into the starting process of free-piston engine generator," Applied Energy, Elsevier, vol. 157(C), pages 798-804.
    2. Zhang, Shuanlu & Zhao, Changlu & Zhao, Zhenfeng, 2015. "Stability analysis of hydraulic free piston engine," Applied Energy, Elsevier, vol. 157(C), pages 805-813.
    3. Jia, Boru & Smallbone, Andrew & Mikalsen, Rikard & Feng, Huihua & Zuo, Zhengxing & Roskilly, Anthony Paul, 2017. "Disturbance analysis of a free-piston engine generator using a validated fast-response numerical model," Applied Energy, Elsevier, vol. 185(P1), pages 440-451.
    4. Feng, Huihua & Guo, Chendong & Yuan, Chenheng & Guo, Yuyao & Zuo, Zhengxing & Roskilly, Anthony Paul & Jia, Boru, 2016. "Research on combustion process of a free piston diesel linear generator," Applied Energy, Elsevier, vol. 161(C), pages 395-403.
    5. Lim, Ocktaeck & Hung, Nguyen Ba & Oh, Seokyoung & Kim, Gangchul & Song, Hanho & Iida, Norimasa, 2015. "A study of operating parameters on the linear spark ignition engine," Applied Energy, Elsevier, vol. 160(C), pages 746-760.
    6. Jia, Boru & Zuo, Zhengxing & Feng, Huihua & Tian, Guohong & Smallbone, Andrew & Roskilly, A.P., 2016. "Effect of closed-loop controlled resonance based mechanism to start free piston engine generator: Simulation and test results," Applied Energy, Elsevier, vol. 164(C), pages 532-539.
    7. Mikalsen, R. & Roskilly, A.P., 2009. "A computational study of free-piston diesel engine combustion," Applied Energy, Elsevier, vol. 86(7-8), pages 1136-1143, July.
    8. Ngwaka, Ugochukwu & Jia, Boru & Lawrence, Christopher & Wu, Dawei & Smallbone, Andrew & Roskilly, Anthony Paul, 2019. "The characteristics of a Linear Joule Engine Generator operating on a dry friction principle," Applied Energy, Elsevier, vol. 237(C), pages 49-59.
    9. Zhao, Zhenfeng & Zhang, Fujun & Huang, Ying & Zhao, Changlu & Guo, Feng, 2012. "An experimental study of the hydraulic free piston engine," Applied Energy, Elsevier, vol. 99(C), pages 226-233.
    10. Yuxi Miao & Zhengxing Zuo & Huihua Feng & Chendong Guo & Yu Song & Boru Jia & Yuyao Guo, 2016. "Research on the Combustion Characteristics of a Free-Piston Gasoline Engine Linear Generator during the Stable Generating Process," Energies, MDPI, vol. 9(8), pages 1-19, August.
    11. Jia, Boru & Smallbone, Andrew & Feng, Huihua & Tian, Guohong & Zuo, Zhengxing & Roskilly, A.P., 2016. "A fast response free-piston engine generator numerical model for control applications," Applied Energy, Elsevier, vol. 162(C), pages 321-329.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonid Plotnikov, 2023. "Preparation and Analysis of Experimental Findings on the Thermal and Mechanical Characteristics of Pulsating Gas Flows in the Intake System of a Piston Engine for Modelling and Machine Learning," Mathematics, MDPI, vol. 11(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Chendong & Zuo, Zhengxing & Feng, Huihua & Jia, Boru & Roskilly, Tony, 2020. "Review of recent advances of free-piston internal combustion engine linear generator," Applied Energy, Elsevier, vol. 269(C).
    2. Peng Sun & Chi Zhang & Jinhua Chen & Fei Zhao & Youyong Liao & Guilin Yang & Chinyin Chen, 2016. "Decoupling Design and Verification of a Free-Piston Linear Generator," Energies, MDPI, vol. 9(12), pages 1-23, December.
    3. Jia, Boru & Smallbone, Andrew & Mikalsen, Rikard & Feng, Huihua & Zuo, Zhengxing & Roskilly, Anthony Paul, 2017. "Disturbance analysis of a free-piston engine generator using a validated fast-response numerical model," Applied Energy, Elsevier, vol. 185(P1), pages 440-451.
    4. Fukang Ma & Shuanlu Zhang & Zhenfeng Zhao & Yifang Wang, 2021. "Research on the Operating Characteristics of Hydraulic Free-Piston Engines: A Systematic Review and Meta-Analysis," Energies, MDPI, vol. 14(12), pages 1-23, June.
    5. Jia, Boru & Mikalsen, Rikard & Smallbone, Andrew & Zuo, Zhengxing & Feng, Huihua & Roskilly, Anthony Paul, 2016. "Piston motion control of a free-piston engine generator: A new approach using cascade control," Applied Energy, Elsevier, vol. 179(C), pages 1166-1175.
    6. Ziwei Zhang & Huihua Feng & Zhengxing Zuo, 2020. "Numerical Investigation of a Free-Piston Hydrogen-Gasoline Engine Linear Generator," Energies, MDPI, vol. 13(18), pages 1-16, September.
    7. Wang, Yaodong & Chen, Lin & Jia, Boru & Roskilly, Anthony Paul, 2017. "Experimental study of the operation characteristics of an air-driven free-piston linear expander," Applied Energy, Elsevier, vol. 195(C), pages 93-99.
    8. Yan, Xiaodong & Feng, Huihua & Zuo, Zhengxing & Zhang, Zhiyuan & Wu, Limin & Shi, Cheng, 2021. "A study on the working characteristics of free piston linear generator with dual cylinder configuration by different secondary injection strategies," Energy, Elsevier, vol. 233(C).
    9. Yuxi Miao & Zhengxing Zuo & Huihua Feng & Chendong Guo & Yu Song & Boru Jia & Yuyao Guo, 2016. "Research on the Combustion Characteristics of a Free-Piston Gasoline Engine Linear Generator during the Stable Generating Process," Energies, MDPI, vol. 9(8), pages 1-19, August.
    10. Zhang, Chen & Sun, Zongxuan, 2016. "Using variable piston trajectory to reduce engine-out emissions," Applied Energy, Elsevier, vol. 170(C), pages 403-414.
    11. Hung, Nguyen Ba & Lim, Ocktaeck, 2016. "A review of free-piston linear engines," Applied Energy, Elsevier, vol. 178(C), pages 78-97.
    12. Zhang, Zhiyuan & Feng, Huihua & Jia, Boru & Zuo, Zhengxing & Yan, Xiaodong & Smallbone, Andrew & Roskilly, Anthony Paul, 2022. "Identification and analysis on the variation sources of a dual-cylinder free piston engine generator and their influence on system operating characteristics," Energy, Elsevier, vol. 242(C).
    13. Zhang, Shuanlu & Zhao, Zhenfeng & Zhao, Changlu & Zhang, Fujun & Wang, Shan, 2016. "Experimental study of hydraulic electronic unit injector in a hydraulic free piston engine," Applied Energy, Elsevier, vol. 179(C), pages 888-898.
    14. Sangram Kishore Nanda & Boru Jia & Andrew Smallbone & Anthony Paul Roskilly, 2017. "Development of a Diesel Engine Thermal Overload Monitoring System with Applications and Test Results," Energies, MDPI, vol. 10(7), pages 1-13, June.
    15. Yuan, Chenheng & Lu, Jiangchuan & Li, Shilei, 2023. "Thermoelectric coupling effect of secondary injection on gasoline fuel spray and mixing of a free vibration combustion alternator," Energy, Elsevier, vol. 281(C).
    16. Zhou, Yingcong & Sofianopoulos, Aimilios & Gainey, Brian & Lawler, Benjamin & Mamalis, Sotirios, 2019. "A system-level numerical study of a homogeneous charge compression ignition spring-assisted free piston linear alternator with various piston motion profiles," Applied Energy, Elsevier, vol. 239(C), pages 820-835.
    17. Zhang, Shuanlu & Zhao, Zhenfeng & Zhao, Changlu & Zhang, Fujun & Wang, Shan, 2017. "Cold starting characteristics analysis of hydraulic free piston engine," Energy, Elsevier, vol. 119(C), pages 879-886.
    18. Wu, Limin & Feng, Huihua & Jia, Boru & Tang, Zhifeng & Yan, Xiaodong & Wang, Wei, 2022. "A novel method to investigate the power generation characteristics of linear generator in full frequency operation range applied to opposed-piston free-piston engine generator _ Simulation and test re," Energy, Elsevier, vol. 254(PB).
    19. Yuan, Chenheng & Liu, Yang & Han, Cuijie & He, Yituan, 2019. "An investigation of mixture formation characteristics of a free-piston gasoline engine with direct-injection," Energy, Elsevier, vol. 173(C), pages 626-636.
    20. Yuan, Chenheng & Feng, Huihua & He, Yituan & Xu, Jing, 2016. "Combustion characteristics analysis of a free-piston engine generator coupling with dynamic and scavenging," Energy, Elsevier, vol. 102(C), pages 637-649.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2657-:d:247379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.