A wind speed forecasting model using nonlinear auto-regressive model optimized by the hybrid chaos-cloud salp swarm algorithm
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.131332
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
- Yao, Qingtao & Zhu, Haowei & Xiang, Ling & Su, Hao & Hu, Aijun, 2023. "A novel composed method of cleaning anomy data for improving state prediction of wind turbine," Renewable Energy, Elsevier, vol. 204(C), pages 131-140.
- Shen, Shui-Long & Lin, Song-Shun & Zhou, Annan, 2023. "A cloud model-based approach for risk analysis of excavation system," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Liu, Lingfeng & Wang, Jie, 2023. "A cluster of 1D quadratic chaotic map and its applications in image encryption," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 89-114.
- Sareen, Karan & Panigrahi, Bijaya Ketan & Shikhola, Tushar & Chawla, Astha, 2023. "A robust De-Noising Autoencoder imputation and VMD algorithm based deep learning technique for short-term wind speed prediction ensuring cyber resilience," Energy, Elsevier, vol. 283(C).
- Wu, Qiang & Zheng, Hongling & Guo, Xiaozhu & Liu, Guangqiang, 2022. "Promoting wind energy for sustainable development by precise wind speed prediction based on graph neural networks," Renewable Energy, Elsevier, vol. 199(C), pages 977-992.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Muyuan Du & Zhimeng Zhang & Chunning Ji, 2025. "Prediction for Coastal Wind Speed Based on Improved Variational Mode Decomposition and Recurrent Neural Network," Energies, MDPI, vol. 18(3), pages 1-28, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chen, Xin & Ye, Xiaoling & Shi, Jian & Zhang, Yingchao & Xiong, Xiong, 2024. "A spatial transfer-based hybrid model for wind speed forecasting," Energy, Elsevier, vol. 313(C).
- Tatlıcıoğlu, Buğçe Eminağa, 2024. "A simple chaotic system using signum function," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 1072-1088.
- Gomez, William & Wang, Fu-Kwun & Lo, Shih-Che, 2024. "A hybrid approach based machine learning models in electricity markets," Energy, Elsevier, vol. 289(C).
- Wang, Yufeng & Yang, Zihan & Ma, Jianhua & Jin, Qun, 2024. "A wind speed forecasting framework for multiple turbines based on adaptive gate mechanism enhanced multi-graph attention networks," Applied Energy, Elsevier, vol. 372(C).
- Erendira Corona-Bermúdez & Juan Carlos Chimal-Eguía & Uriel Corona-Bermúdez & Mario Eduardo Rivero-Ángeles, 2023. "Chaos Meets Cryptography: Developing an S-Box Design with the Rössler Attractor," Mathematics, MDPI, vol. 11(22), pages 1-16, November.
- Hu, Yue & Liu, Hanjing & Wu, Senzhen & Zhao, Yuan & Wang, Zhijin & Liu, Xiufeng, 2024. "Temporal collaborative attention for wind power forecasting," Applied Energy, Elsevier, vol. 357(C).
- Jiang, Wenjun & Liu, Bo & Liang, Yang & Gao, Huanxiang & Lin, Pengfei & Zhang, Dongqin & Hu, Gang, 2024. "Applicability analysis of transformer to wind speed forecasting by a novel deep learning framework with multiple atmospheric variables," Applied Energy, Elsevier, vol. 353(PB).
- Zongwei Zhang & Lianlei Lin & Sheng Gao & Junkai Wang & Hanqing Zhao & Hangyi Yu, 2025. "A machine learning model for hub-height short-term wind speed prediction," Nature Communications, Nature, vol. 16(1), pages 1-18, December.
- Yang, Mao & Han, Chao & Zhang, Wei & Wang, Bo, 2024. "A short-term power prediction method for wind farm cluster based on the fusion of multi-source spatiotemporal feature information," Energy, Elsevier, vol. 294(C).
- Liang, Yang & Zhang, Dongqin & Zhang, Jize & Hu, Gang, 2024. "A state-of-the-art analysis on decomposition method for short-term wind speed forecasting using LSTM and a novel hybrid deep learning model," Energy, Elsevier, vol. 313(C).
- Wu, Zheng & Zhang, Yue & Dong, Ze, 2024. "NOx concentration prediction based on multi-channel fused spectral temporal graph neural network in coal-fired power plants," Energy, Elsevier, vol. 305(C).
- Wu, Binrong & Yu, Sihao & Peng, Lu & Wang, Lin, 2024. "Interpretable wind speed forecasting with meteorological feature exploring and two-stage decomposition," Energy, Elsevier, vol. 294(C).
- Chen, Jinbao & Liu, Shaohua & Wang, Yunhe & Hu, Wenqing & Zou, Yidong & Zheng, Yang & Xiao, Zhihuai, 2024. "Generalized predictive control application scheme for nonlinear hydro-turbine regulation system: Based on a precise novel control structure," Energy, Elsevier, vol. 296(C).
- Wu, Tangjie & Ling, Qiang, 2024. "Self-supervised dynamic stochastic graph network for spatio-temporal wind speed forecasting," Energy, Elsevier, vol. 304(C).
- Joseph, Lionel P. & Deo, Ravinesh C. & Casillas-Pérez, David & Prasad, Ramendra & Raj, Nawin & Salcedo-Sanz, Sancho, 2024. "Short-term wind speed forecasting using an optimized three-phase convolutional neural network fused with bidirectional long short-term memory network model," Applied Energy, Elsevier, vol. 359(C).
- Zheng, Xiangyu & Liu, Qi & Li, Yufeng & Wang, Bo & Qin, Wutao, 2025. "Safety risk assessment for connected and automated vehicles: Integrating FTA and CM-improved AHP," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
- Matteo Paoletti & Vincenzo Piscopo & Chiara Sbarbati & Antonino Scarelli, 2024. "Categorization of the Potential Impact of Italian Quarries on Water Resources through a Multi-Criteria Decision Aiding-Based Model," Sustainability, MDPI, vol. 16(7), pages 1-18, March.
- Merhi, Ali & Andow, Brandon & Cruzado, Hector & Letchford, Chris & Lombardo, Frank, 2025. "A framework for post-windstorm functional recovery of non-residential buildings applied to hospitals," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
- Wang, Zhijin & Liu, Xiufeng & Huang, Yaohui & Zhang, Peisong & Fu, Yonggang, 2023. "A multivariate time series graph neural network for district heat load forecasting," Energy, Elsevier, vol. 278(PA).
- Abdul Nasir Khan & Abid Mehmood & Muhammad Nasir Mumtaz Bhutta & Iftikhar Ahmed Khan & Atta ur Rehman Khan, 2024. "An efficient and compromise-resilient image encryption scheme for resource-constrained environments," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-30, April.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011058. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.