IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224010028.html
   My bibliography  Save this article

Investigation and improvement of complex characteristics of packed bed thermal energy storage (PBTES) in adiabatic compressed air energy storage (A-CAES) systems

Author

Listed:
  • Ge, Gangqiang
  • Wang, Huanran
  • Li, Ruixiong
  • Sun, Hao
  • Zhang, Yufei

Abstract

With the application of large-scale renewable energy, power grids have put forward explicit demands for energy storage. Among the various forms of energy storage systems, the adiabatic compressed air energy storage (A-CAES) system has received more attention due to its environmental friendliness and adaptability. As a key link in the regenerative A-CAES, thermal energy storage (TES) has an important impact on the efficiency of the system. Among various forms of TES, PBTES has better economy and adaptability. However, there is insufficient research on the impact of PBTES structure on A-CAES systems. Therefore, a dimensionless governing equation for the PBTES is proposed to study the depth effect of the PBTES structure. Through comparing with the pilot-scale and industrial-scale PBTES experimental data, the maximum error of the model is 2.3%, which proves that the model has good accuracy in the simulation of different scales of PBTES. The result of research shows that: the improved thickness of the structural layer is between 0.1 m and 0.15 m. The increase in the number of cycles of the A-CAES system results in a gradual increase in system efficiency. For the A-CAES system, the round-trip efficiency is improved by 4.1%, reaching 64%, with the improvement of the wall, volume ratio, and height-to-diameter ratio of PBTES.

Suggested Citation

  • Ge, Gangqiang & Wang, Huanran & Li, Ruixiong & Sun, Hao & Zhang, Yufei, 2024. "Investigation and improvement of complex characteristics of packed bed thermal energy storage (PBTES) in adiabatic compressed air energy storage (A-CAES) systems," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224010028
    DOI: 10.1016/j.energy.2024.131229
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224010028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.