IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v296y2024ics0360544224009204.html
   My bibliography  Save this article

Pore-to-meter scale modeling of heat and mass transport applied to thermal energy storage: How local thermal and velocity fluctuations affect average thermal dispersivity

Author

Listed:
  • Qu, Ming-Liang
  • Yang, Jinping
  • Foroughi, Sajjad
  • Zhang, Yifan
  • Yu, Zi-Tao
  • Blunt, Martin J.
  • Lin, Qingyang

Abstract

We use a dual-network model to simulate heat and mass transfer in porous media. The model captures pore-scale information in meter-scale simulations and allows for non-equilibrium between the solid and pore space. We apply the model to predict the effective thermal diffusivity in networks representing Bentheimer sandstone, Estaillades limestone and two random packings of monodisperse spheres. Non-Fourier transport at early times can lead to both higher and lower thermal dispersivity than currently assumed using a volume-weighted average of fluid and solid properties. Furthermore, we quantify the mechanical dispersion coefficient caused by differences in local flow velocity, which further contributes to thermal dispersion of the plume. We discuss the results in the context of the design and management of ATES (aquifer thermal energy storage). Ignoring pore-scale velocity and temperature fluctuations in the estimation of averaged properties can lead to errors of more than 50%. The work provides a framework to predict thermal properties of porous media under different flow conditions for more accurate prediction and design of thermal energy storage.

Suggested Citation

  • Qu, Ming-Liang & Yang, Jinping & Foroughi, Sajjad & Zhang, Yifan & Yu, Zi-Tao & Blunt, Martin J. & Lin, Qingyang, 2024. "Pore-to-meter scale modeling of heat and mass transport applied to thermal energy storage: How local thermal and velocity fluctuations affect average thermal dispersivity," Energy, Elsevier, vol. 296(C).
  • Handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009204
    DOI: 10.1016/j.energy.2024.131147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224009204
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Kun & Nian, Yong-Le & Cheng, Wen-Long, 2018. "Analysis and optimization of underground thermal energy storage using depleted oil wells," Energy, Elsevier, vol. 163(C), pages 1006-1016.
    2. Mahon, Harry & O'Connor, Dominic & Friedrich, Daniel & Hughes, Ben, 2022. "A review of thermal energy storage technologies for seasonal loops," Energy, Elsevier, vol. 239(PC).
    3. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    4. Ankur Deep Bordoloi & David Scheidweiler & Marco Dentz & Mohammed Bouabdellaoui & Marco Abbarchi & Pietro de Anna, 2022. "Structure induced laminar vortices control anomalous dispersion in porous media," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Felix J. Meigel & Thomas Darwent & Leonie Bastin & Lucas Goehring & Karen Alim, 2022. "Dispersive transport dynamics in porous media emerge from local correlations," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Rusin, Krzysztof & Ochmann, Jakub & Bartela, Łukasz & Rulik, Sebastian & Stanek, Bartosz & Jurczyk, Michał & Waniczek, Sebastian, 2022. "Influence of geometrical dimensions and particle diameter on exergy performance of packed-bed thermal energy storage," Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brown, C.S. & Kolo, I. & Lyden, A. & Franken, L. & Kerr, N. & Marshall-Cross, D. & Watson, S. & Falcone, G. & Friedrich, D. & Diamond, J., 2024. "Assessing the technical potential for underground thermal energy storage in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Cameron, Lewis & Winskel, Mark & Bolton, Ronan, 2025. "Explaining the emergence and absence of Seasonal Thermal Energy Storage in the UK: Evidence from local case studies," Applied Energy, Elsevier, vol. 377(PB).
    3. Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Li, Shuang & Wang, Gaosheng & Zhou, Mengmeng & Song, Xianzhi & Shi, Yu & Yi, Junlin & Zhao, Jialin & Zhou, Yifan, 2024. "Thermal performance of an aquifer thermal energy storage system: Insights from novel multilateral wells," Energy, Elsevier, vol. 294(C).
    5. Wang, Jiacheng & Tan, Xianfeng & Zhao, Zhihong & Chen, Jinfan & He, Jie & Shi, Qipeng, 2024. "Coupled thermo-hydro-mechanical modeling on geothermal doublet subject to seasonal exploitation and storage," Energy, Elsevier, vol. 293(C).
    6. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan & Sun, Qie, 2021. "Seasonal thermal energy storage: A techno-economic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Heinze, Thomas & Gunatilake, Thanushika, 2025. "Estimating the heat transfer in fractured geothermal reservoirs," Energy, Elsevier, vol. 321(C).
    8. Chen, Kecheng & Sun, Xiang & Soga, Kenichi & Nico, Peter S. & Dobson, Patrick F., 2024. "Machine-learning-assisted long-term G functions for bidirectional aquifer thermal energy storage system operation," Energy, Elsevier, vol. 301(C).
    9. Han, X.C. & Xu, H.J. & Hua, W.S., 2023. "Decomposition performance and kinetics analysis of magnesium hydroxide regulated with C/N/Ti/Si additives for thermochemical heat storage," Applied Energy, Elsevier, vol. 344(C).
    10. Feng, Yupeng & Hu, Xiannan & Li, Xuhan & Zhang, Man & Zhu, Shahong & Yang, Hairui, 2023. "Self-compensation and attenuation mechanisms of carbide slag in multicycle thermochemical heat storage," Renewable Energy, Elsevier, vol. 218(C).
    11. Singh, Aditya Kumar & Rathore, Pushpendra Kumar Singh & Sharma, R.K. & Gupta, Naveen Kumar & Kumar, Rajan, 2023. "Experimental evaluation of composite concrete incorporated with thermal energy storage material for improved thermal behavior of buildings," Energy, Elsevier, vol. 263(PA).
    12. Joana Verheyen & Christian Thommessen & Jürgen Roes & Harry Hoster, 2025. "Effects on the Unit Commitment of a District Heating System Due to Seasonal Aquifer Thermal Energy Storage and Solar Thermal Integration," Energies, MDPI, vol. 18(3), pages 1-33, January.
    13. Beernink, Stijn & Bloemendal, Martin & Kleinlugtenbelt, Rob & Hartog, Niels, 2022. "Maximizing the use of aquifer thermal energy storage systems in urban areas: effects on individual system primary energy use and overall GHG emissions," Applied Energy, Elsevier, vol. 311(C).
    14. Qi, Cuiting & Zhou, Renjie & Zhan, Hongbin, 2023. "Analysis of heat transfer in an aquifer thermal energy storage system: On the role of two-dimensional thermal conduction," Renewable Energy, Elsevier, vol. 217(C).
    15. Hu, Zhiru & Li, Tianshuang & Zhang, Yuxin & Tao, Yao & Tu, Jiyuan & Yang, Qizhi & Wang, Yong & Yang, Lizhong & Romagnoli, Alessandro, 2024. "Experimental investigation on the performance of a borehole thermal energy storage system based on similarity and symmetry," Energy, Elsevier, vol. 313(C).
    16. Yang, Xiaolin & Kong, Ying & Zhou, Yu & Liu, Dawei & Xia, Jianjun, 2024. "Case study on combined heat and water system for district heating in Beijing through recovery of industrial waste heat in Tangshan," Energy, Elsevier, vol. 300(C).
    17. Fleuchaus, Paul & Schüppler, Simon & Godschalk, Bas & Bakema, Guido & Blum, Philipp, 2020. "Performance analysis of Aquifer Thermal Energy Storage (ATES)," Renewable Energy, Elsevier, vol. 146(C), pages 1536-1548.
    18. Joel Alpízar-Castillo & Laura Ramirez-Elizondo & Pavol Bauer, 2022. "Assessing the Role of Energy Storage in Multiple Energy Carriers toward Providing Ancillary Services: A Review," Energies, MDPI, vol. 16(1), pages 1-31, December.
    19. Stemmle, Ruben & Blum, Philipp & Schüppler, Simon & Fleuchaus, Paul & Limoges, Melissa & Bayer, Peter & Menberg, Kathrin, 2021. "Environmental impacts of aquifer thermal energy storage (ATES)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    20. Yang, Tianrun & Liu, Wen & Sun, Qie & Hu, Weihao & Kramer, Gert Jan, 2023. "Techno-economic-environmental analysis of seasonal thermal energy storage with solar heating for residential heating in China," Energy, Elsevier, vol. 283(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:296:y:2024:i:c:s0360544224009204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.