IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224002949.html
   My bibliography  Save this article

Thermal energy demand decarbonization for the industrial sector via an innovative solar combined technology

Author

Listed:
  • Sadi, Meisam
  • Alsagri, Ali Sulaiman
  • Rahbari, Hamid Reza
  • Khosravi, Soheil
  • Arabkoohsar, Ahmad

Abstract

The main motivation of this study is to offer, develop, and optimize a novel solar combined technology to bring sustainability to the industrial sector via supplying 100 % green and cost-effective heating and cooling. The combination of a special type of parabolic trough collector designed to be inexpensive with low-concentration yet high-optical efficiency and a specially developed bio-driven boiler to compensate for the fluctuations of the solar energy is the heart of the proposed system. The article presents a thorough complex optimization and techno-economic-environmental analysis of the proposed solution and conducts a benchmarking analysis against cheap but unsustainable technologies of today's industries for a large case study in Northern Europe. The results prove the strong impacts of the technology in emission reduction and lower cost production of industrial heating and cooling. The solar component of the system fulfills nearly 50 % of the total demand, with the biomass heater, burning sugarcane bagasse, covering the additional demand. For the proposed system, a levelized cost of energy of 69.9 USD/MWh and an emission index of 267.7 tons/GWh are achieved, while the identical and alternative systems would necessitate 9,660, 11,600, and 3860 tons of coal, wood, or LPG, respectively, to fulfill the park's thermal requirements.

Suggested Citation

  • Sadi, Meisam & Alsagri, Ali Sulaiman & Rahbari, Hamid Reza & Khosravi, Soheil & Arabkoohsar, Ahmad, 2024. "Thermal energy demand decarbonization for the industrial sector via an innovative solar combined technology," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002949
    DOI: 10.1016/j.energy.2024.130523
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224002949
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130523?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.