IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224000392.html
   My bibliography  Save this article

An actuator line method for performance prediction of HAWTs at urban flow conditions: A case study of rooftop wind turbines

Author

Listed:
  • ArabGolarcheh, Alireza
  • Anbarsooz, Morteza
  • Benini, Ernesto

Abstract

Blade-resolved numerical modeling of wind turbines at complex flow conditions are resource expensive due to large computational domains and extra-fine grid requirements. The Actuator Line Method (ALM) can significantly boost the simulation speed, providing acceptable accuracy and flow details. This study investigates the performance of NREL Phase VI wind turbine mounted over a high-rise building at nine different locations, providing practical illustrations of complicated flow situations. To demonstrate the superior capabilities of this method compared to the actuator disk model, two hub-heights are considered for mounting the wind turbine. Results showed that the power coefficient of the turbines with higher hub-height are close to the corresponding bare wind turbine. However, up to 52 % reduction was observed for the low hub-heights. Furthermore, variations of the bending moment experienced by the turbine's blade in a complete revolution are presented, which is a crucial factor affecting the fatigue life and structural stability of the wind turbine. Eventually, more in-depth discussions on the time-evolution of rotor performance at various locations are presented by illustrating the spanwise distributions of Angle-of-Attack histogram and its PSD diagram for the blade-1 of the wind turbine.

Suggested Citation

  • ArabGolarcheh, Alireza & Anbarsooz, Morteza & Benini, Ernesto, 2024. "An actuator line method for performance prediction of HAWTs at urban flow conditions: A case study of rooftop wind turbines," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224000392
    DOI: 10.1016/j.energy.2024.130268
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224000392
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130268?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224000392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.