IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipds0360544221026001.html
   My bibliography  Save this article

Towards enhancing the wind energy potential at the built environment: Geometry effects of two adjacent buildings

Author

Listed:
  • Anbarsooz, M.
  • Amiri, M.

Abstract

Previous studies have revealed that orienting two buildings to create a diverging passage in-between, results in a high wind velocity region for mounting the wind turbines. In this study, geometry modifications are proposed to two adjacent buildings with a diverging passage in-between to enhance the available wind energy potential. The simulations are performed for two building heights at a constant diverging angle of 45°. Results showed that adding the properly designed segments can enhance the maximum over-speed ratio from 1.49 to 1.62 at H = 30 m and from 1.66 to 1.83 at H = 60 m. The effects of adding the segments are also analyzed in the presence of a typical wind turbine, the NREL Phase VI turbine, between the two buildings. It is found that for the incident wind velocities of 5–10 m/s, the average captured wind power will increase 8% and 22% for H = 30 m and H = 60 m, respectively (in comparison to the buildings without the added segments). In comparison with a bare wind turbine, the captured wind energy with the added segments shows an increment of 31% and 83% for H = 30 m and H = 60 m, respectively.

Suggested Citation

  • Anbarsooz, M. & Amiri, M., 2022. "Towards enhancing the wind energy potential at the built environment: Geometry effects of two adjacent buildings," Energy, Elsevier, vol. 239(PD).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221026001
    DOI: 10.1016/j.energy.2021.122351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221026001
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122351?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takaaki Kono & Tetsuya Kogaki & Takahiro Kiwata, 2016. "Numerical Investigation of Wind Conditions for Roof-Mounted Wind Turbines: Effects of Wind Direction and Horizontal Aspect Ratio of a High-Rise Cuboid Building," Energies, MDPI, vol. 9(11), pages 1-20, November.
    2. Acarer, Sercan & Uyulan, Çağlar & Karadeniz, Ziya Haktan, 2020. "Optimization of radial inflow wind turbines for urban wind energy harvesting," Energy, Elsevier, vol. 202(C).
    3. Siahpour, Shahin & Khakiani, Fardad N. & Fazlollahi, Vahid & Golozar, Ali & Shirazi, Farzad A., 2021. "Morphing Omni-directional Panel Mechanism: A novel active roof design for improving the performance of the wind delivery system," Energy, Elsevier, vol. 217(C).
    4. Li, Q.S. & Shu, Z.R. & Chen, F.B., 2016. "Performance assessment of tall building-integrated wind turbines for power generation," Applied Energy, Elsevier, vol. 165(C), pages 777-788.
    5. Jeongsu Park & Hyung-Jo Jung & Seung-Woo Lee & Jiyoung Park, 2015. "A New Building-Integrated Wind Turbine System Utilizing the Building," Energies, MDPI, vol. 8(10), pages 1-25, October.
    6. Kumar, Vedant & Saha, Sandeep, 2019. "Theoretical performance estimation of shrouded-twin-rotor wind turbines using the actuator disk theory," Renewable Energy, Elsevier, vol. 134(C), pages 961-969.
    7. Abohela, Islam & Hamza, Neveen & Dudek, Steven, 2013. "Effect of roof shape, wind direction, building height and urban configuration on the energy yield and positioning of roof mounted wind turbines," Renewable Energy, Elsevier, vol. 50(C), pages 1106-1118.
    8. Hosseini, S. Rasoul & Ganji, Davoud Domiri, 2020. "A novel design of nozzle-diffuser to enhance performance of INVELOX wind turbine," Energy, Elsevier, vol. 198(C).
    9. Anbarsooz, M. & Amiri, M. & Rashidi, I., 2019. "A novel curtain design to enhance the aerodynamic performance of Invelox: A steady-RANS numerical simulation," Energy, Elsevier, vol. 168(C), pages 207-221.
    10. Ledo, L. & Kosasih, P.B. & Cooper, P., 2011. "Roof mounting site analysis for micro-wind turbines," Renewable Energy, Elsevier, vol. 36(5), pages 1379-1391.
    11. Toja-Silva, Francisco & Lopez-Garcia, Oscar & Peralta, Carlos & Navarro, Jorge & Cruz, Ignacio, 2016. "An empirical–heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings," Applied Energy, Elsevier, vol. 164(C), pages 769-794.
    12. Toja-Silva, Francisco & Colmenar-Santos, Antonio & Castro-Gil, Manuel, 2013. "Urban wind energy exploitation systems: Behaviour under multidirectional flow conditions—Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 364-378.
    13. Lu, Lin & Ip, Ka Yan, 2009. "Investigation on the feasibility and enhancement methods of wind power utilization in high-rise buildings of Hong Kong," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 450-461, February.
    14. Liu, Yingyi & Yoshida, Shigeo, 2015. "An extension of the Generalized Actuator Disc Theory for aerodynamic analysis of the diffuser-augmented wind turbines," Energy, Elsevier, vol. 93(P2), pages 1852-1859.
    15. Arteaga-López, Ernesto & Ángeles-Camacho, Cesar & Bañuelos-Ruedas, Francisco, 2019. "Advanced methodology for feasibility studies on building-mounted wind turbines installation in urban environment: Applying CFD analysis," Energy, Elsevier, vol. 167(C), pages 181-188.
    16. Søren Hjort & Helgi Larsen, 2014. "A Multi-Element Diffuser Augmented Wind Turbine," Energies, MDPI, vol. 7(5), pages 1-26, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. ArabGolarcheh, Alireza & Anbarsooz, Morteza & Benini, Ernesto, 2024. "An actuator line method for performance prediction of HAWTs at urban flow conditions: A case study of rooftop wind turbines," Energy, Elsevier, vol. 292(C).
    2. Hasheminasab, Hamidreza & Streimikiene, Dalia & Pishahang, Mohammad, 2023. "A novel energy poverty evaluation: Study of the European Union countries," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan, Yu-Hsuan & Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert & Wen, Chih-Yung & Yang, An-Shik, 2022. "CFD assessment of wind energy potential for generic high-rise buildings in close proximity: Impact of building arrangement and height," Applied Energy, Elsevier, vol. 321(C).
    2. Juan, Yu-Hsuan & Wen, Chih-Yung & Li, Zhengtong & Yang, An-Shik, 2021. "Impacts of urban morphology on improving urban wind energy potential for generic high-rise building arrays," Applied Energy, Elsevier, vol. 299(C).
    3. Juan, Y.-H. & Wen, C.-Y. & Chen, W.-Y. & Yang, A.-S., 2021. "Numerical assessments of wind power potential and installation arrangements in realistic highly urbanized areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. ArabGolarcheh, Alireza & Anbarsooz, Morteza & Benini, Ernesto, 2024. "An actuator line method for performance prediction of HAWTs at urban flow conditions: A case study of rooftop wind turbines," Energy, Elsevier, vol. 292(C).
    5. Ye, Xiulan & Zhang, Xuelin & Weerasuriya, A.U. & Hang, Jian & Zeng, Liyue & Li, Cruz Y., 2024. "Optimum design parameters for a venturi-shaped roof to maximize the performance of building-integrated wind turbines," Applied Energy, Elsevier, vol. 355(C).
    6. Dai, S.F. & Liu, H.J. & Peng, H.Y., 2022. "Assessment of parapet effect on wind flow properties and wind energy potential over roofs of tall buildings," Renewable Energy, Elsevier, vol. 199(C), pages 826-839.
    7. Škvorc, Petar & Kozmar, Hrvoje, 2021. "Wind energy harnessing on tall buildings in urban environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    8. Toja-Silva, Francisco & Lopez-Garcia, Oscar & Peralta, Carlos & Navarro, Jorge & Cruz, Ignacio, 2016. "An empirical–heuristic optimization of the building-roof geometry for urban wind energy exploitation on high-rise buildings," Applied Energy, Elsevier, vol. 164(C), pages 769-794.
    9. Daniel Micallef & Gerard Van Bussel, 2018. "A Review of Urban Wind Energy Research: Aerodynamics and Other Challenges," Energies, MDPI, vol. 11(9), pages 1-27, August.
    10. Bontempo, R. & Manna, M., 2020. "Diffuser augmented wind turbines: Review and assessment of theoretical models," Applied Energy, Elsevier, vol. 280(C).
    11. KC, Anup & Whale, Jonathan & Urmee, Tania, 2019. "Urban wind conditions and small wind turbines in the built environment: A review," Renewable Energy, Elsevier, vol. 131(C), pages 268-283.
    12. Zhang, Shuaibin & Du, Bowen & Ge, Mingwei & Zuo, Yingtao, 2022. "Study on the operation of small rooftop wind turbines and its effect on the wind environment in blocks," Renewable Energy, Elsevier, vol. 183(C), pages 708-718.
    13. Arteaga-López, Ernesto & Angeles-Camacho, César, 2021. "Innovative virtual computational domain based on wind rose diagrams for micrositing small wind turbines," Energy, Elsevier, vol. 220(C).
    14. M. Abdelsalam, Ali & Abdelmordy, M. & Ibrahim, K.A. & Sakr, I.M., 2023. "An investigation on flow behavior and performance of a wind turbine integrated within a building tunnel," Energy, Elsevier, vol. 280(C).
    15. Dai, S.F. & Liu, H.J. & Chu, Y.J. & Lam, H.F. & Peng, H.Y., 2022. "Impact of corner modification on wind characteristics and wind energy potential over flat roofs of tall buildings," Energy, Elsevier, vol. 241(C).
    16. Hernández, Ó. Soto & Volkov, K. & Martín Mederos, A.C. & Medina Padrón, J.F. & Feijóo Lorenzo, A.E., 2015. "Power output of a wind turbine installed in an already existing viaduct," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 287-299.
    17. Yang, An-Shik & Su, Ying-Ming & Wen, Chih-Yung & Juan, Yu-Hsuan & Wang, Wei-Siang & Cheng, Chiang-Ho, 2016. "Estimation of wind power generation in dense urban area," Applied Energy, Elsevier, vol. 171(C), pages 213-230.
    18. Zahra Sefidgar & Amir Ahmadi Joneidi & Ahmad Arabkoohsar, 2023. "A Comprehensive Review on Development and Applications of Cross-Flow Wind Turbines," Sustainability, MDPI, vol. 15(5), pages 1-39, March.
    19. Jangyoul You & Kipyo You & Minwoo Park & Changhee Lee, 2021. "Airflow Characteristics According to the Change in the Height and Porous Rate of Building Roofs for Efficient Installation of Small Wind Power Generators," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    20. Oscar Garcia & Alain Ulazia & Mario del Rio & Sheila Carreno-Madinabeitia & Andoni Gonzalez-Arceo, 2019. "An Energy Potential Estimation Methodology and Novel Prototype Design for Building-Integrated Wind Turbines," Energies, MDPI, vol. 12(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221026001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.