IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544224000574.html
   My bibliography  Save this article

An optical study on the cross-spray characteristics and combustion flames of automobile engine fueled with diesel/methanol under various injection timings

Author

Listed:
  • Chen, Zhanming
  • Zhao, Pengyun
  • Zhang, Haitao
  • Chen, Hao
  • He, Haibin
  • Wu, Jie
  • Wang, Lei
  • Lou, Hua

Abstract

The fundamental research on the spray and combustion characteristics of diesel/methanol dual injection was explored in this study. A constant-volume combustion chamber was modified to accommodate cross-fuel injection by adding another fuel supply and an injection system. The effects of diesel/methanol injection timings on cross-spray and flame development were analysed for various injection intervals and pressures. The results showed that as the injection pressure increased, the high atomisation of the diesel–methanol mixed spray plume promoted its combustion. After diesel–methanol impingement at injection pressure of 100 MPa, a significant increase in the spray area occurred up to 62.5 % compared to its value at 60 MPa, resulting in a shortened combustion ignition delay, increased flame lift-off length and reduced soot generation. In addition, when methanol was used prior to diesel injection, the combustion ignition delay and flame lift-off length increased and soot generation decreased, as the diesel injection timings delay increased. Soot generation can be reduced by up to 33.3 % compared to that generated via the simultaneous injection of diesel/methanol at 60 MPa, by utilising a high injection pressure and proper injection timing. The study findings will provide a theoretical basis for the development of diesel/methanol dual-fuel direct-injection engines.

Suggested Citation

  • Chen, Zhanming & Zhao, Pengyun & Zhang, Haitao & Chen, Hao & He, Haibin & Wu, Jie & Wang, Lei & Lou, Hua, 2024. "An optical study on the cross-spray characteristics and combustion flames of automobile engine fueled with diesel/methanol under various injection timings," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000574
    DOI: 10.1016/j.energy.2024.130286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224000574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jing, Wei & Wu, Zengyang & Zhang, Weibo & Fang, Tiegang, 2015. "Measurements of soot temperature and KL factor for spray combustion of biomass derived renewable fuels," Energy, Elsevier, vol. 91(C), pages 758-771.
    2. Yang, Ziming & Fei, Chunguang & Li, Yikai & Wang, Dongfang & Sun, Chenhan, 2023. "Experimental study of the effect of physical and chemical properties of alcohols on the spray combustion characteristics of alcohol-diesel blended fuels," Energy, Elsevier, vol. 263(PE).
    3. Zhang, Ji & Jing, Wei & Roberts, William L. & Fang, Tiegang, 2013. "Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber," Applied Energy, Elsevier, vol. 107(C), pages 52-65.
    4. Feng, Hongqing & Chen, Xiaofan & Sun, Liangliang & Ma, Ruixiu & Zhang, Xiuxia & Zhu, Lijun & Yang, Chaohe, 2023. "The effect of methanol/diesel fuel blends with co-solvent on diesel engine combustion based on experiment and exergy analysis," Energy, Elsevier, vol. 282(C).
    5. Wang, Bin & Yao, Anren & Yao, Chunde & Chen, Chao & Wang, Hui, 2020. "In-depth comparison between pure diesel and diesel methanol dual fuel combustion mode," Applied Energy, Elsevier, vol. 278(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Dandan & Yang, Kaixuan & Zhao, Xuan & Mei, Danhua & Ying, Yaoyao & Xu, Lei & Tu, Xin & Liu, Dong, 2022. "Comprehensive optical diagnostics for flame behavior and soot emission response to a non-equilibrium plasma," Energy, Elsevier, vol. 255(C).
    2. Xiaoqing Zhang & Tie Li & Pengfei Ma & Bin Wang, 2017. "Spray Combustion Characteristics and Soot Emission Reduction of Hydrous Ethanol Diesel Emulsion Fuel Using Color-Ratio Pyrometry," Energies, MDPI, vol. 10(12), pages 1-13, December.
    3. Lis Corral-Gómez & Octavio Armas & José A. Soriano & José V. Pastor & José M. García-Oliver & Carlos Micó, 2022. "An Optical Engine Used as a Physical Model for Studies of the Combustion Process Applying a Two-Color Pyrometry Technique," Energies, MDPI, vol. 15(13), pages 1-17, June.
    4. Mustafa Temur & Cenk Sayin & Ilker Turgut Yilmaz, 2024. "The Experimental Investigation of the Effects on the Combustion, Performance, and Emission Characteristics of an RCCI Engine Using Methanol/Diesel Fuel," Energies, MDPI, vol. 17(6), pages 1-19, March.
    5. Pang, Kar Mun & Karvounis, Nikolas & Walther, Jens Honore & Schramm, Jesper, 2016. "Numerical investigation of soot formation and oxidation processes under large two-stroke marine diesel engine-like conditions using integrated CFD-chemical kinetics," Applied Energy, Elsevier, vol. 169(C), pages 874-887.
    6. Lee, Chia-fon & Pang, Yuxin & Wu, Han & Nithyanandan, Karthik & Liu, Fushui, 2020. "An optical investigation of substitution rates on natural gas/diesel dual-fuel combustion in a diesel engine," Applied Energy, Elsevier, vol. 261(C).
    7. Jingjing He & Hao Chen & Xin Su & Bin Xie & Quanwei Li, 2021. "Combustion Study of Polyoxymethylene Dimethyl Ethers and Diesel Blend Fuels on an Optical Engine," Energies, MDPI, vol. 14(15), pages 1-19, July.
    8. Xu, Leilei & Treacy, Mark & Zhang, Yan & Aziz, Amir & Tuner, Martin & Bai, Xue-Song, 2022. "Comparison of efficiency and emission characteristics in a direct-injection compression ignition engine fuelled with iso-octane and methanol under low temperature combustion conditions," Applied Energy, Elsevier, vol. 312(C).
    9. Chen, Hao & Su, Xin & He, Jingjing & Zhang, Peng & Xu, Hongming & Zhou, Chenglong, 2021. "Investigation on combustion characteristics of cyclopentanol/diesel fuel blends in an optical engine," Renewable Energy, Elsevier, vol. 167(C), pages 811-829.
    10. Yin, Xiaojun & Yue, Guangzhao & Liu, Junlong & Duan, Hao & Duan, Qimeng & Kou, Hailiang & Wang, Ying & Yang, Bo & Zeng, Ke, 2023. "Investigation into the operating range of a dual-direct injection engine fueled with methanol and diesel," Energy, Elsevier, vol. 267(C).
    11. Jeon, Joonho & Park, Sungwook, 2015. "Effects of pilot injection strategies on the flame temperature and soot distributions in an optical CI engine fueled with biodiesel and conventional diesel," Applied Energy, Elsevier, vol. 160(C), pages 581-591.
    12. Wang, Dongfang & Zhang, Jiahao & Li, Yikai & Shi, Zhongjie & Yang, Ziming, 2023. "Experimental investigation of a post-combustion pool fire phenomenon due to the spray-wall interaction under DI engine-like cold-start conditions," Energy, Elsevier, vol. 274(C).
    13. Pham, Quangkhai & Park, Sungwook & Agarwal, Avinash Kumar & Park, Suhan, 2022. "Review of dual-fuel combustion in the compression-ignition engine: Spray, combustion, and emission," Energy, Elsevier, vol. 250(C).
    14. Wu, Shaohua & Yang, Wenming & Xu, Hongpeng & Jiang, Yu, 2019. "Investigation of soot aggregate formation and oxidation in compression ignition engines with a pseudo bi-variate soot model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Li, Xiangrong & Gao, Haobu & Zhao, Luming & Zhang, Zheng & He, Xu & Liu, Fushui, 2016. "Combustion and emission performance of a split injection diesel engine in a double swirl combustion system," Energy, Elsevier, vol. 114(C), pages 1135-1146.
    16. Jing, Wei & Wu, Zengyang & Zhang, Weibo & Fang, Tiegang, 2015. "Measurements of soot temperature and KL factor for spray combustion of biomass derived renewable fuels," Energy, Elsevier, vol. 91(C), pages 758-771.
    17. Chen, Mingfei & Zhou, Kaile & Liu, Dong, 2024. "Machine learning based technique for outlier detection and result prediction in combustion diagnostics," Energy, Elsevier, vol. 290(C).
    18. Agarwal, Avinash Kumar & Kumar, Vikram & Ankur Kalwar, Ashutosh Jena, 2022. "Fuel injection strategy optimisation and experimental performance and emissions evaluation of diesel displacement by port fuel injected methanol in a retrofitted mid-size genset engine prototype," Energy, Elsevier, vol. 248(C).
    19. Zhou, Li & Li, Fashe & Zhang, Huicong & Duan, Yaozong & Wang, Hua, 2024. "Effect of phospholipids on the oxidative reactivity and microstructure of soot particles from Jatropha biodiesel combustion," Applied Energy, Elsevier, vol. 354(PB).
    20. Ao Zhou & Hui Jin & Wenhan Cao & Ming Pang & Yangyang Li & Chao Zhu, 2022. "Influence of Pilot Injection on Combustion Characteristic of Methanol–Diesel Dual-Fuel Engine," Energies, MDPI, vol. 15(10), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544224000574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.