IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v323y2025ics0360544225014999.html
   My bibliography  Save this article

The effects of injection timings on the spray and combustion of automobile engines fueled with diesel/methanol under cross and horizontal injection

Author

Listed:
  • Zhao, Pengyun
  • Huang, Lvmeng
  • Chen, Zhanming
  • He, Haibin
  • Wu, Jie
  • Wang, Long
  • Duan, Xiongbo
  • Chen, Hao

Abstract

In this paper, the spray and combustion characteristics of diesel/methanol under different injection angles (IA) and diesel injection time delay (Δt) are studied on a constant volume combustion chamber using optical diagnosis techniques. The results show that changing the IA and Δt can effectively change the diesel/methanol mixture distribution and achieve both concentration stratification and reactivity stratification. The collision length, collision width, and spray projected area of 90° IA are all greater than those of 180° IA. In addition, increasing Δt promotes the diffusion and evaporation of collision spray, resulting in a larger liquid phase and vapor phase spray projected area. Compared to 90° IA, 180° IA enhances the relative speed and collision strength of the two jets and also reduces the equivalence ratio of the collision jet, thereby inhibiting diesel spontaneous combustion and extending ignition delay. This results in a more intense combustion process, with shorter combustion duration, and lower soot emissions. Furthermore, the increase in Δt additionally allows the diesel methanol collision spray to obtain a longer ignition delay, a shorter combustion duration, a smaller flame area, and less soot emission, all of which can greatly improve the combustion and emission characteristics of an internal combustion engine.

Suggested Citation

  • Zhao, Pengyun & Huang, Lvmeng & Chen, Zhanming & He, Haibin & Wu, Jie & Wang, Long & Duan, Xiongbo & Chen, Hao, 2025. "The effects of injection timings on the spray and combustion of automobile engines fueled with diesel/methanol under cross and horizontal injection," Energy, Elsevier, vol. 323(C).
  • Handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014999
    DOI: 10.1016/j.energy.2025.135857
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225014999
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135857?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yin, Xiaojun & Yue, Guangzhao & Liu, Junlong & Duan, Hao & Duan, Qimeng & Kou, Hailiang & Wang, Ying & Yang, Bo & Zeng, Ke, 2023. "Investigation into the operating range of a dual-direct injection engine fueled with methanol and diesel," Energy, Elsevier, vol. 267(C).
    2. Feng, Lining & Chu, Xianghe & He, Jialin & Duan, Xiongbo & Sun, Zhiqiang, 2024. "The performance and emissions behaviors of methanol heavy-duty vehicle under cold start and hot start of the WHTC standard condition," Energy, Elsevier, vol. 309(C).
    3. Chen, Zhanming & Zhao, Pengyun & Wang, Tao & He, Haibin & Chen, Hao & Zhang, Peng & Li, Yangyang & Geng, Limin & Qi, Donghui, 2024. "Visualization study the cross spray and combustion characteristics of diesel and methanol in a constant volume combustion chamber at cold and flare flash boiling regions," Energy, Elsevier, vol. 301(C).
    4. Jing, Wei & Wu, Zengyang & Zhang, Weibo & Fang, Tiegang, 2015. "Measurements of soot temperature and KL factor for spray combustion of biomass derived renewable fuels," Energy, Elsevier, vol. 91(C), pages 758-771.
    5. Zhang, Ji & Jing, Wei & Roberts, William L. & Fang, Tiegang, 2013. "Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber," Applied Energy, Elsevier, vol. 107(C), pages 52-65.
    6. Zhang, Zhiqing & Lv, Junshuai & Xie, Guanglin & Wang, Su & Ye, Yanshuai & Huang, Gaohua & Tan, Donlgi, 2022. "Effect of assisted hydrogen on combustion and emission characteristics of a diesel engine fueled with biodiesel," Energy, Elsevier, vol. 254(PA).
    7. Chen, Zhanming & Zhao, Pengyun & Zhang, Haitao & Chen, Hao & He, Haibin & Wu, Jie & Wang, Lei & Lou, Hua, 2024. "An optical study on the cross-spray characteristics and combustion flames of automobile engine fueled with diesel/methanol under various injection timings," Energy, Elsevier, vol. 290(C).
    8. Tan, Dongli & Wu, Yao & Lv, Junshuai & Li, Jian & Ou, Xiaoyu & Meng, Yujun & Lan, Guanglin & Chen, Yanhui & Zhang, Zhiqing, 2023. "Performance optimization of a diesel engine fueled with hydrogen/biodiesel with water addition based on the response surface methodology," Energy, Elsevier, vol. 263(PC).
    9. Ding, Haoyu & Zhao, Jin & Zhang, Zhenyu & Xu, Kai & Fu, Luxin & He, Xu, 2023. "A numerical study on the interaction of droplet collisions and air flow impact in cross-impinging spray," Energy, Elsevier, vol. 277(C).
    10. Li, Yaopeng & Li, Hua & Pang, Bin & Liu, Fei & Jia, Ming & Long, Wuqiang & Tian, Jiangping & Guo, Lijun, 2023. "Co-optimization of injection parameters and injector layouts for a methanol/diesel direct dual-fuel stratification (DDFS) engine," Energy, Elsevier, vol. 284(C).
    11. Bai, Fanlong & Zhao, Fuquan & Liu, Ming & Liu, Zongwei & Hao, Han & Reiner, David M., 2025. "Assessing the Viability of Renewable Hydrogen, Ammonia, and Methanol in Decarbonizing Heavy-duty Trucks," Applied Energy, Elsevier, vol. 383(C).
    12. Zhai, Chang & Liu, Erwei & Zhang, Gengxin & Xing, Wenjing & Chang, Feixiang & Jin, Yu & Luo, Hongliang & Nishida, Keiya & Ogata, Yoichi, 2024. "Similarity and normalization study of fuel spray and combustion under ultra-high injection pressure and micro-hole diameter conditions–spray characteristics," Energy, Elsevier, vol. 288(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhanming & Xu, Xiaorui & He, Haibin & Chai, Guoqing & Wang, Xiaochen & Wu, Jie & Wang, Lei & Lou, Hua & Chen, Hao, 2025. "Comparative study of the spray and combustion characteristics of diesel engine dual injection with cross and horizontally opposed settings," Energy, Elsevier, vol. 318(C).
    2. Chen, Zhanming & He, Haibin & Wu, Jie & Wang, Lei & Lou, Hua & Zhao, Pengyun & Wang, Tao & Zhang, Haitao & Chen, Hao, 2024. "An experimental study the cross spray and combustion characteristics diesel and ammonia in a constant volume combustion chamber," Energy, Elsevier, vol. 293(C).
    3. Zhang, Zhiqing & Zhong, Weihuang & Mao, Chengfang & Xu, Yuejiang & Lu, Kai & Ye, Yanshuai & Guan, Wei & Pan, Mingzhang & Tan, Dongli, 2024. "Multi-objective optimization of Fe-based SCR catalyst on the NOx conversion efficiency for a diesel engine based on FGRA-ANN/RF," Energy, Elsevier, vol. 294(C).
    4. Chen, Zhanming & Zhao, Pengyun & Wang, Tao & He, Haibin & Chen, Hao & Zhang, Peng & Li, Yangyang & Geng, Limin & Qi, Donghui, 2024. "Visualization study the cross spray and combustion characteristics of diesel and methanol in a constant volume combustion chamber at cold and flare flash boiling regions," Energy, Elsevier, vol. 301(C).
    5. Qiu, Shuyi & Wang, Shangning & Nour, Mohamed & Li, Xuesong & Xu, Min & Wang, Lijun & Zhang, Haijun, 2025. "Experimental study on flow fields of spray impingement under flash boiling conditions," Energy, Elsevier, vol. 318(C).
    6. Zhang, Zhiqing & Hu, Jingyi & Yang, Dayong & Yin, Zibin & Lu, Kai & Tan, Dongli, 2024. "A comprehensive assessment over the environmental impact and combustion efficiency of using ammonia/ hydrogen/diesel blends in a diesel engine," Energy, Elsevier, vol. 303(C).
    7. Chen, Zhanming & Zhao, Pengyun & Zhang, Haitao & Chen, Hao & He, Haibin & Wu, Jie & Wang, Lei & Lou, Hua, 2024. "An optical study on the cross-spray characteristics and combustion flames of automobile engine fueled with diesel/methanol under various injection timings," Energy, Elsevier, vol. 290(C).
    8. Kou, Chuanfu & Feng, Changling & Ning, Dezhong & Xiang, Chen & Tan, Yan & E, Jiaqiang, 2025. "Collaborative optimization design of intake and combustion chamber structures for heavy-duty natural gas engines under knock limitation," Energy, Elsevier, vol. 316(C).
    9. Qi, Dandan & Yang, Kaixuan & Zhao, Xuan & Mei, Danhua & Ying, Yaoyao & Xu, Lei & Tu, Xin & Liu, Dong, 2022. "Comprehensive optical diagnostics for flame behavior and soot emission response to a non-equilibrium plasma," Energy, Elsevier, vol. 255(C).
    10. Zhai, Chang & Li, Kuichun & Chen, Run & Luo, Hongliang, 2025. "Experimental investigation of fuel spray and combustion with wall impingement under premixed conditions: A comparative analysis of flat wall and 2-D piston cavity," Energy, Elsevier, vol. 315(C).
    11. Tan, Dongli & Meng, Yujun & Tian, Jie & Zhang, Chengtao & Zhang, Zhiqing & Yang, Guanhua & Cui, Shuwan & Hu, Jingyi & Zhao, Ziheng, 2023. "Utilization of renewable and sustainable diesel/methanol/n-butanol (DMB) blends for reducing the engine emissions in a diesel engine with different pre-injection strategies," Energy, Elsevier, vol. 269(C).
    12. Jia, Guohai & Gao, Sheng & Shu, Xiong & Ren, Bing & Zhang, Bin & Ma, Guangyu & Zhang, Jian & Liu, Hui & Li, Dongmei, 2024. "Multi-objective optimization of emission parameters of a diesel engine using oxygenated fuel and pilot injection strategy based on RSM-NSGA III," Energy, Elsevier, vol. 293(C).
    13. Fan, Lulu & Shi, Weishuo & Jing, Jun & Dong, Zhenhua & Yuan, Jinwei & Qu, Lingbo, 2025. "An artificial intelligence strategy for multi-objective optimization of Urea-SCR for vehicle diesel engine by RSM-VIKOR," Energy, Elsevier, vol. 317(C).
    14. Leng, Xianyin & Xing, Mochen & Luo, Zhengwei & Jin, Yu & He, Zhixia & Wei, Shengli, 2024. "An investigation on methanol high pressure spray characteristics and their predictive models," Energy, Elsevier, vol. 313(C).
    15. Xiaoqing Zhang & Tie Li & Pengfei Ma & Bin Wang, 2017. "Spray Combustion Characteristics and Soot Emission Reduction of Hydrous Ethanol Diesel Emulsion Fuel Using Color-Ratio Pyrometry," Energies, MDPI, vol. 10(12), pages 1-13, December.
    16. Yin, Xiaojun & Ren, Xianfeng & Wang, Jinping & Duan, Hao & Hu, Erjiang & Zeng, Ke, 2025. "Influence of methanol and diesel injection timings on the maximum methanol energy substitution ratio and performance of diesel/methanol dual-direct injection engine," Energy, Elsevier, vol. 318(C).
    17. Dongli Tan & Yao Wu & Zhiqing Zhang & Yue Jiao & Lingchao Zeng & Yujun Meng, 2023. "Assessing the Life Cycle Sustainability of Solar Energy Production Systems: A Toolkit Review in the Context of Ensuring Environmental Performance Improvements," Sustainability, MDPI, vol. 15(15), pages 1-37, July.
    18. Zhang, Zhiqing & Hu, Jingyi & Tan, Dongli & Li, Junming & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Ye, Yanshuai & Zhao, Ziheng & Yang, Guanhua, 2023. "Multi-objective optimization of the three-way catalytic converter on the combustion and emission characteristics for a gasoline engine," Energy, Elsevier, vol. 277(C).
    19. Zhang, Zhiqing & Hu, Jingyi & Wang, Yuguo & Pan, Mingzhang & Lu, Kai & Ye, Yanshuai & Yin, Zibin, 2025. "An artificial intelligence-based strategy for multi-objective optimization of diesel engine fueled with ammonia-diesel-hydrogen blended fuel," Energy, Elsevier, vol. 318(C).
    20. Tarafdar, Anirban & Majumder, P. & Deb, Madhujit & Bera, U.K., 2023. "Application of a q-rung orthopair hesitant fuzzy aggregated Type-3 fuzzy logic in the characterization of performance-emission profile of a single cylinder CI-engine operating with hydrogen in dual fu," Energy, Elsevier, vol. 269(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:323:y:2025:i:c:s0360544225014999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.