IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223035119.html
   My bibliography  Save this article

Data-driven machine learning model of a Selective Catalytic Reduction on Filter (SCRF) in a heavy-duty diesel engine: A comparison of Artificial Neural Network with Tree-based algorithms

Author

Listed:
  • Okeleye, Samuel Adeola
  • Thiruvengadam, Arvind
  • Perhinschi, Mario G.
  • Carder, Daniel

Abstract

The Selective Catalytic Reduction on Filter (SCRF) system is yet to be deployed in current heavy-duty diesel engine aftertreatment system. Due to the thermal, space and cost benefits of the SCRF, it could become a useful component of the after-treatment system of a heavy-duty diesel engine, as regulators continue to demand an even cleaner environment. Ammonia cross-sensitivity of NOx sensors at the post-SCRF location poses challenges in measuring NOx emission accurately at this location and in turn affects the NOx conversion efficiency calculations. Developing a model that could replace the NOx sensor helps to mitigate the ammonia cross-sensitivity challenge as well as provides a medium to measure post-SCRF NOx concentration and NOx conversion efficiency while saving the cost on NOx sensors. This work focuses on a data-driven approach to developing a model for predicting NOx conversion efficiency across the SCRF using Artificial Neural Network, Bootstrap Forest, and Boosted Tree methods. Further, the three modeling techniques were also compared for accuracy and computation cost.

Suggested Citation

  • Okeleye, Samuel Adeola & Thiruvengadam, Arvind & Perhinschi, Mario G. & Carder, Daniel, 2024. "Data-driven machine learning model of a Selective Catalytic Reduction on Filter (SCRF) in a heavy-duty diesel engine: A comparison of Artificial Neural Network with Tree-based algorithms," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035119
    DOI: 10.1016/j.energy.2023.130117
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223035119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cesar de Lima Nogueira, Silvio & Och, Stephan Hennings & Moura, Luis Mauro & Domingues, Eric & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2023. "Prediction of the NOx and CO2 emissions from an experimental dual fuel engine using optimized random forest combined with feature engineering," Energy, Elsevier, vol. 280(C).
    2. Tu, Jun & Wayne, W. Scott & Perhinschi, Mario G., 2013. "Correlation Analysis of Duty Cycle Effects on Exhaust Emissions and Fuel Economy," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 52(1).
    3. Ding, Xiaosong & Feng, Chong & Yu, Peiling & Li, Kaiwen & Chen, Xi, 2023. "Gradient boosting decision tree in the prediction of NOx emission of waste incineration," Energy, Elsevier, vol. 264(C).
    4. Liu, Jinlong & Huang, Qiao & Ulishney, Christopher & Dumitrescu, Cosmin E., 2021. "Machine learning assisted prediction of exhaust gas temperature of a heavy-duty natural gas spark ignition engine," Applied Energy, Elsevier, vol. 300(C).
    5. Kale, Aneesh Vijay & Krishnasamy, Anand, 2023. "Numerical investigation on selecting appropriate piston bowl geometry and compression ratio for gasoline-fuelled homogeneous charge compression ignited light-duty diesel engine," Energy, Elsevier, vol. 282(C).
    6. Roy, Rishi & Gupta, Ashwani K., 2022. "Data-driven prediction of flame temperature and pollutant emission in distributed combustion," Applied Energy, Elsevier, vol. 310(C).
    7. Yan, Peiliang & Fan, Weijun & Zhang, Rongchun, 2023. "Predicting the NOx emissions of low heat value gas rich-quench-lean combustor via three integrated learning algorithms with Bayesian optimization," Energy, Elsevier, vol. 273(C).
    8. Jens F. Peters & Mercedes Burguillo & Jose M. Arranz, 2021. "Low emission zones: Effects on alternative-fuel vehicle uptake and fleet CO2 emissions," Papers 2103.13801, arXiv.org, revised May 2021.
    9. Li, Wei & Wang, Ting & Lu, Can, 2023. "Pathways to net-zero emissions from China's transportation industry: Considering alternative fuels," Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Mengzhao & Park, Suhan, 2023. "Predictions and analysis of flash boiling spray characteristics of gasoline direct injection injectors based on optimized machine learning algorithm," Energy, Elsevier, vol. 262(PA).
    2. Zhou, Mengmeng & Wang, Shuai & Luo, Kun & Fan, Jianren, 2022. "Three-dimensional modeling study of the oxy-fuel co-firing of coal and biomass in a bubbling fluidized bed," Energy, Elsevier, vol. 247(C).
    3. Cheng, Xianda & Zheng, Haoran & Yang, Qian & Zheng, Peiying & Dong, Wei, 2023. "Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions," Energy, Elsevier, vol. 278(PA).
    4. Yuan, Chenheng & Peng, Shizhuo & Zhou, Lifu, 2023. "Multi-field coupling effect of injection on dynamics and thermodynamics of a linear combustion engine generator with slow compression and fast expansion," Energy, Elsevier, vol. 270(C).
    5. Pinyi Su & Muhammad Imran & Muhammad Nadeem & Shamsheer ul Haq, 2023. "The Role of Environmental Law in Farmers’ Environment-Protecting Intentions and Behavior Based on Their Legal Cognition: A Case Study of Jiangxi Province, China," Sustainability, MDPI, vol. 15(11), pages 1-22, May.
    6. Cesar de Lima Nogueira, Silvio & Och, Stephan Hennings & Moura, Luis Mauro & Domingues, Eric & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2023. "Prediction of the NOx and CO2 emissions from an experimental dual fuel engine using optimized random forest combined with feature engineering," Energy, Elsevier, vol. 280(C).
    7. Krystian Pietrzak & Oliwia Pietrzak & Andrzej Montwiłł, 2021. "Effects of Incorporating Rail Transport into a Zero-Emission Urban Deliveries System: Application of Light Freight Railway (LFR) Electric Trains," Energies, MDPI, vol. 14(20), pages 1-24, October.
    8. Youngjin Seol & Seunghyun Lee & Jiho Lee & Chang-Wan Kim & Hyun Su Bak & Youngchul Byun & Janghyeok Yoon, 2024. "An Interpretable Time Series Forecasting Model for Predicting NOx Emission Concentration in Ferroalloy Electric Arc Furnace Plants," Mathematics, MDPI, vol. 12(6), pages 1-22, March.
    9. Wang, Huaiyu & Ji, Changwei & Shi, Cheng & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan & Chang, Ke & Meng, Hao & Wang, Xin, 2023. "Multi-objective optimization of a hydrogen-fueled Wankel rotary engine based on machine learning and genetic algorithm," Energy, Elsevier, vol. 263(PD).
    10. Yuan, Chenheng & He, Lei & Zhou, Lifu, 2022. "Numerical simulation of the effect of spring dynamics on the combustion of free piston linear engine," Energy, Elsevier, vol. 254(PA).
    11. Alruqi, Mansoor & Sharma, Prabhakar & Ağbulut, Ümit, 2023. "Investigations on biomass gasification derived producer gas and algal biodiesel to power a dual-fuel engines: Application of neural networks optimized with Bayesian approach and K-cross fold," Energy, Elsevier, vol. 282(C).
    12. Kale, Aneesh Vijay & Krishnasamy, Anand, 2024. "Experimental study on combustion, performance, and emission characteristics of a homogeneous charge compression ignition engine fuelled with multiple biofuel-gasoline blends," Energy, Elsevier, vol. 288(C).
    13. Wang, Jianguo & Han, Lincheng & Zhang, Xiuyu & Wang, Yingzhou & Zhang, Shude, 2023. "Electrical load forecasting based on variable T-distribution and dual attention mechanism," Energy, Elsevier, vol. 283(C).
    14. Irfan Javid & Rozaida Ghazali & Waddah Saeed & Tuba Batool & Ebrahim Al-Wajih, 2023. "CNN with New Spatial Pyramid Pooling and Advanced Filter-Based Techniques: Revolutionizing Traffic Monitoring via Aerial Images," Sustainability, MDPI, vol. 16(1), pages 1-13, December.
    15. Ruomiao Yang & Tianfang Xie & Zhentao Liu, 2022. "The Application of Machine Learning Methods to Predict the Power Output of Internal Combustion Engines," Energies, MDPI, vol. 15(9), pages 1-16, April.
    16. Wang, Yuhua & Wang, Guiyong & Yao, Guozhong & Shen, Qianqiao & Yu, Xuan & He, Shuchao, 2023. "Combining GA-SVM and NSGA-Ⅲ multi-objective optimization to reduce the emission and fuel consumption of high-pressure common-rail diesel engine," Energy, Elsevier, vol. 278(PA).
    17. Prieto-Rodriguez, Juan & Perez-Villadoniga, Maria J. & Salas, Rafael & Russo, Ana, 2022. "Impact of London Toxicity Charge and Ultra Low Emission Zone on NO2," Transport Policy, Elsevier, vol. 129(C), pages 237-247.
    18. Yan, Peiliang & Fan, Weijun & Zhang, Rongchun, 2023. "Predicting the NOx emissions of low heat value gas rich-quench-lean combustor via three integrated learning algorithms with Bayesian optimization," Energy, Elsevier, vol. 273(C).
    19. Cao, Jiale & Li, Tie & Huang, Shuai & Chen, Run & Li, Shiyan & Kuang, Min & Yang, Rundai & Huang, Yating, 2023. "Co-optimization of miller degree and geometric compression ratio of a large-bore natural gas generator engine with novel Knock models and machine learning," Applied Energy, Elsevier, vol. 352(C).
    20. Fei, Mingda & Zhang, Zhenyu & Zhao, Wenbo & Zhang, Peng & Xing, Zhaolin, 2024. "Optimal power distribution control in modular power architecture using hydraulic free piston engines," Applied Energy, Elsevier, vol. 358(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.