IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224003050.html
   My bibliography  Save this article

Research on the method of diesel particulate filters carbon load recognition based on deep learning

Author

Listed:
  • Qiu, Tao
  • Li, Ning
  • Lei, Yan
  • Sang, Hailang
  • Ma, Xuejian
  • Liu, Zedu

Abstract

Because the carbon load inside a diesel particulate filters (DPF) affects the DPF regeneration, and the carbon load recognition is significant for the particulate matter (PM) emission control. It is necessary to investigate an on-board DPF carbon load recognition method because the carbon load cannot be directly measured by sensors. Aiming to build a DPF carbon load prediction model adopting the deep learning method, this paper proposes a DPF carbon load identification model based on different experimental parameters using a layered one dimension convolutional neural network (1D-CNN) method. To improve data validity, this paper adopts two data-processing methods. The data pre-processing adopts data splicing method to complete the construction of the original sample set, and the data after-processing uses wavelet packet transform method to establish the feature sample sets. The model adopts the optimal feature dataset constructed by three input parameters, i.e., temperature difference, pressure difference, and exhaust mass flow, and has both high training accuracy and test accuracy above 90 %. The pressure difference is the most important influencing input parameter, and the three-parameter sample set (ΔT + ΔP + Q) has great recognition accuracy and good model stability with the high training accuracy and test accuracy as well as less iteration.

Suggested Citation

  • Qiu, Tao & Li, Ning & Lei, Yan & Sang, Hailang & Ma, Xuejian & Liu, Zedu, 2024. "Research on the method of diesel particulate filters carbon load recognition based on deep learning," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003050
    DOI: 10.1016/j.energy.2024.130534
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003050
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130534?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.