IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i7p1721-d1623821.html
   My bibliography  Save this article

Modeling of Exhaust Gas Temperature at the Turbine Outlet Using Neural Networks and a Physical Expansion Model

Author

Listed:
  • Alessandro Brusa

    (Department of Industrial Engineering, University of Bologna, 40136 Bologna, Italy)

  • Alice Grossi

    (Department of Industrial Engineering, University of Bologna, 40136 Bologna, Italy)

  • Mirco Lenzi

    (Department of Industrial Engineering, University of Bologna, 40136 Bologna, Italy)

  • Fenil Panalal Shethia

    (Department of Industrial Engineering, University of Bologna, 40136 Bologna, Italy)

  • Nicolò Cavina

    (Department of Industrial Engineering, University of Bologna, 40136 Bologna, Italy)

  • Ioannis Kitsopanidis

    (Ferrari S.p.A., 41053 Maranello, Italy)

Abstract

The accurate estimation of exhaust gas temperature across the turbine is always more important for the optimization of engine performance, ensuring durability of the turbine impeller and catalyst, and reducing and calculating emissions concentration. Traditional physical modeling approaches, based on thermodynamic and fluid dynamics features of gas expansion, can be used for this purpose. However, recent advancements in machine learning, particularly neural networks, offer a data-driven alternative that may enhance prediction accuracy and computational efficiency. This study presents a methodology that integrates a semi-physical turbine model for estimating the exhaust gas temperature at the turbine outlet with a neural network-based approach for predicting the pressure at the turbine inlet. The model utilizes the exhaust gas temperature upstream of the turbine, a model for which was developed in a previous work of the authors. The models are calibrated with steady-state data and then evaluated based on accuracy and robustness under transient operating conditions on six driving cycles with different features. In this way, robust and reliable validation of the models is presented, since the testing is performed on various conditions not used for model development and calibration. Results show an average root mean square error of 14%, including the initial portions of driving cycles performed with a cold engine. Thus, the developed approach that includes multiple modeling methods shows a good predictivity, which is the main objective of this research activity.

Suggested Citation

  • Alessandro Brusa & Alice Grossi & Mirco Lenzi & Fenil Panalal Shethia & Nicolò Cavina & Ioannis Kitsopanidis, 2025. "Modeling of Exhaust Gas Temperature at the Turbine Outlet Using Neural Networks and a Physical Expansion Model," Energies, MDPI, vol. 18(7), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1721-:d:1623821
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/7/1721/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/7/1721/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alessandro Brusa & Nicolò Cavina & Nahuel Rojo & Jacopo Mecagni & Enrico Corti & Davide Moro & Matteo Cucchi & Nicola Silvestri, 2021. "Development and Experimental Validation of an Adaptive, Piston-Damage-Based Combustion Control System for SI Engines: Part 2—Implementation of Adaptive Strategies," Energies, MDPI, vol. 14(17), pages 1-21, August.
    2. Alessandro Brusa & Fenil Panalal Shethia & Boris Petrone & Nicolò Cavina & Davide Moro & Giovanni Galasso & Ioannis Kitsopanidis, 2024. "The Enhancement of Machine Learning-Based Engine Models Through the Integration of Analytical Functions," Energies, MDPI, vol. 17(21), pages 1-26, October.
    3. Liu, Jinlong & Huang, Qiao & Ulishney, Christopher & Dumitrescu, Cosmin E., 2021. "Machine learning assisted prediction of exhaust gas temperature of a heavy-duty natural gas spark ignition engine," Applied Energy, Elsevier, vol. 300(C).
    4. Alessandro Brusa & Nicolò Cavina & Nahuel Rojo & Jacopo Mecagni & Enrico Corti & Vittorio Ravaglioli & Matteo Cucchi & Nicola Silvestri, 2021. "Development and Experimental Validation of an Adaptive, Piston-Damage-Based Combustion Control System for SI Engines: Part 1—Evaluating Open-Loop Chain Performance," Energies, MDPI, vol. 14(17), pages 1-27, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alessandro Brusa & Emanuele Giovannardi & Massimo Barichello & Nicolò Cavina, 2022. "Comparative Evaluation of Data-Driven Approaches to Develop an Engine Surrogate Model for NOx Engine-Out Emissions under Steady-State and Transient Conditions," Energies, MDPI, vol. 15(21), pages 1-22, October.
    2. Karol Tucki & Olga Orynycz & Leszek Mieszkalski & Joao Gilberto Mendes dos Reis & Jonas Matijošius & Michał Wocial & Ivan Kuric & Simone Pascuzzi, 2023. "Analysis of the Influence of the Spark Plug on Exhaust Gas Composition," Energies, MDPI, vol. 16(11), pages 1-25, May.
    3. Chang, Mengzhao & Park, Suhan, 2023. "Predictions and analysis of flash boiling spray characteristics of gasoline direct injection injectors based on optimized machine learning algorithm," Energy, Elsevier, vol. 262(PA).
    4. Zhou, Mengmeng & Wang, Shuai & Luo, Kun & Fan, Jianren, 2022. "Three-dimensional modeling study of the oxy-fuel co-firing of coal and biomass in a bubbling fluidized bed," Energy, Elsevier, vol. 247(C).
    5. Yuan, Chenheng & Peng, Shizhuo & Zhou, Lifu, 2023. "Multi-field coupling effect of injection on dynamics and thermodynamics of a linear combustion engine generator with slow compression and fast expansion," Energy, Elsevier, vol. 270(C).
    6. Ma, Yinjie & Yang, Dong & Xie, Deyi & E, Jiaqiang, 2024. "Investigating the effect of fuel properties and environmental parameters on low-octane gasoline-like fuel spray combustion and emissions using machine learning-global sensitivity analysis method," Energy, Elsevier, vol. 306(C).
    7. Farhan, Muhammad & Chen, Tianhao & Rao, Anas & Shahid, Muhammad Ihsan & Xiao, Qiuhong & Liu, Yongzheng & Ma, Fanhua, 2024. "Performance, emissions and combustion analysis of hydrogen-enriched compressed natural gas spark ignition engine by optimized Gaussian process regression and neural network at low speed on different l," Energy, Elsevier, vol. 302(C).
    8. Pinyi Su & Muhammad Imran & Muhammad Nadeem & Shamsheer ul Haq, 2023. "The Role of Environmental Law in Farmers’ Environment-Protecting Intentions and Behavior Based on Their Legal Cognition: A Case Study of Jiangxi Province, China," Sustainability, MDPI, vol. 15(11), pages 1-22, May.
    9. Cesar de Lima Nogueira, Silvio & Och, Stephan Hennings & Moura, Luis Mauro & Domingues, Eric & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2023. "Prediction of the NOx and CO2 emissions from an experimental dual fuel engine using optimized random forest combined with feature engineering," Energy, Elsevier, vol. 280(C).
    10. Wang, Huaiyu & Ji, Changwei & Shi, Cheng & Yang, Jinxin & Wang, Shuofeng & Ge, Yunshan & Chang, Ke & Meng, Hao & Wang, Xin, 2023. "Multi-objective optimization of a hydrogen-fueled Wankel rotary engine based on machine learning and genetic algorithm," Energy, Elsevier, vol. 263(PD).
    11. Liang, Zhendong & Xie, Fangxi & Li, Qian & Su, Yan & Wang, Zhongshu & Dou, Huili & Li, Xiaoping, 2024. "Co-optimization and prediction of high-efficiency combustion and zero-carbon emission at part load in the hydrogen direct injection engine based on VVT, split injection and ANN," Energy, Elsevier, vol. 308(C).
    12. Yuan, Chenheng & He, Lei & Zhou, Lifu, 2022. "Numerical simulation of the effect of spring dynamics on the combustion of free piston linear engine," Energy, Elsevier, vol. 254(PA).
    13. Sok, Ratnak & Jeyamoorthy, Arravind & Kusaka, Jin, 2024. "Novel virtual sensors development based on machine learning combined with convolutional neural-network image processing-translation for feedback control systems of internal combustion engines," Applied Energy, Elsevier, vol. 365(C).
    14. Alessandro Brusa & Fenil Panalal Shethia & Boris Petrone & Nicolò Cavina & Davide Moro & Giovanni Galasso & Ioannis Kitsopanidis, 2024. "The Enhancement of Machine Learning-Based Engine Models Through the Integration of Analytical Functions," Energies, MDPI, vol. 17(21), pages 1-26, October.
    15. Wang, Yuhua & Li, Jinlong & Wang, Guiyong & Chen, Guisheng & He, Shuchao, 2025. "Prediction of diesel particulate filter regeneration conditions and diesel engine performance under regeneration mode using AMSO-BPNN and combined with XGBoost," Applied Energy, Elsevier, vol. 377(PA).
    16. Farhan, Muhammad & Chen, Tianhao & Rao, Anas & Shahid, Muhammad Ihsan & Xiao, Qiuhong & Salam, Hamza Ahmad & Ma, Fanhua, 2024. "An experimental study of knock analysis of HCNG fueled SI engine by different methods and prediction of knock intensity by particle swarm optimization-support vector machine," Energy, Elsevier, vol. 309(C).
    17. Irfan Javid & Rozaida Ghazali & Waddah Saeed & Tuba Batool & Ebrahim Al-Wajih, 2023. "CNN with New Spatial Pyramid Pooling and Advanced Filter-Based Techniques: Revolutionizing Traffic Monitoring via Aerial Images," Sustainability, MDPI, vol. 16(1), pages 1-13, December.
    18. Ruomiao Yang & Tianfang Xie & Zhentao Liu, 2022. "The Application of Machine Learning Methods to Predict the Power Output of Internal Combustion Engines," Energies, MDPI, vol. 15(9), pages 1-16, April.
    19. Okeleye, Samuel Adeola & Thiruvengadam, Arvind & Perhinschi, Mario G. & Carder, Daniel, 2024. "Data-driven machine learning model of a Selective Catalytic Reduction on Filter (SCRF) in a heavy-duty diesel engine: A comparison of Artificial Neural Network with Tree-based algorithms," Energy, Elsevier, vol. 290(C).
    20. Farhan, Muhammad & Chen, Tianhao & Rao, Anas & Shahid, Muhammad Ihsan & Liu, Yongzheng & Ma, Fanhua, 2024. "Comparative knock analysis of HCNG fueled spark ignition engine using different heat transfer models and prediction of knock intensity by artificial neural network fitting tool," Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:7:p:1721-:d:1623821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.