IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics0360544223035090.html
   My bibliography  Save this article

Emergy-based method for the sustainability assessment and improvement of additive manufacturing systems

Author

Listed:
  • Gao, Mengdi
  • Liu, Conghu
  • Li, Lei
  • Li, Qiang
  • Wang, Qingyang
  • Liu, Zhifeng

Abstract

Additive manufacturing (AM) can be used to fabricate products with complex shapes that cannot be realized with traditional manufacturing. However, when manufacturing large metal components, AM is constrained by extended production cycles and reduced efficiency, leading to substantial resource usage and environmental impacts. To clarify the environmental impact and sustainability (EIS) of AM systems and improve their resource utilization and economic benefits, an emergy-based approach was proposed. Initially, the scope and boundary of the approach are defined, and the methodology and preparatory steps are detailed. Subsequently, emergy models for sustainability evaluation are established, including factors such as production time, quality, resource use, costs, and economic performance. A comprehensive evaluation is conducted to determine the relevant indices. The results of the evaluation of three distinct AM processes reveal that resource and energy utilization in AM systems contribute approximately 50% of the environmental impact. To mitigate the environmental impact of AM systems and improve their sustainability, reducing the energy consumption of AM systems is indicated as an effective strategy. Our method quantitatively evaluates the EIS of AM, providing a basis for informed decision-making to reduce environmental impact while enhancing production efficiency and economic benefits.

Suggested Citation

  • Gao, Mengdi & Liu, Conghu & Li, Lei & Li, Qiang & Wang, Qingyang & Liu, Zhifeng, 2024. "Emergy-based method for the sustainability assessment and improvement of additive manufacturing systems," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035090
    DOI: 10.1016/j.energy.2023.130115
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223035090
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.130115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amaral, Luís P. & Martins, Nélson & Gouveia, Joaquim B., 2016. "A review of emergy theory, its application and latest developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 882-888.
    2. Lou, Bo & Ulgiati, Sergio, 2013. "Identifying the environmental support and constraints to the Chinese economic growth—An application of the Emergy Accounting method," Energy Policy, Elsevier, vol. 55(C), pages 217-233.
    3. Brown, Mark T. & Ulgiati, Sergio, 2016. "Assessing the global environmental sources driving the geobiosphere: A revised emergy baseline," Ecological Modelling, Elsevier, vol. 339(C), pages 126-132.
    4. Sun, Cheng & Wang, Yun & McMurtrey, Michael D. & Jerred, Nathan D. & Liou, Frank & Li, Ju, 2021. "Additive manufacturing for energy: A review," Applied Energy, Elsevier, vol. 282(PA).
    5. Zou, Chenchen & Ma, Minda & Zhou, Nan & Feng, Wei & You, Kairui & Zhang, Shufan, 2023. "Toward carbon free by 2060: A decarbonization roadmap of operational residential buildings in China," Energy, Elsevier, vol. 277(C).
    6. Liu, Conghu & Cai, Wei & Dinolov, Ognyan & Zhang, Cuixia & Rao, Weizhen & Jia, Shun & Li, Li & Chan, Felix T.S., 2018. "Emergy based sustainability evaluation of remanufacturing machining systems," Energy, Elsevier, vol. 150(C), pages 670-680.
    7. Jeremy Faludi & Martin Baumers & Ian Maskery & Richard Hague, 2017. "Environmental Impacts of Selective Laser Melting: Do Printer, Powder, Or Power Dominate?," Journal of Industrial Ecology, Yale University, vol. 21(S1), pages 144-156, November.
    8. Zhang, Shufan & Zhou, Nan & Feng, Wei & Ma, Minda & Xiang, Xiwang & You, Kairui, 2023. "Pathway for decarbonizing residential building operations in the US and China beyond the mid-century," Applied Energy, Elsevier, vol. 342(C).
    9. Cai, Wei & Liu, Conghu & Zhang, Cuixia & Ma, Minda & Rao, Weizhen & Li, Wenyi & He, Kang & Gao, Mengdi, 2018. "Developing the ecological compensation criterion of industrial solid waste based on emergy for sustainable development," Energy, Elsevier, vol. 157(C), pages 940-948.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Wei & Liu, Conghu & Zhang, Cuixia & Ma, Minda & Rao, Weizhen & Li, Wenyi & He, Kang & Gao, Mengdi, 2018. "Developing the ecological compensation criterion of industrial solid waste based on emergy for sustainable development," Energy, Elsevier, vol. 157(C), pages 940-948.
    2. Liu, Conghu & Gao, Mengdi & Zhu, Guang & Zhang, Cuixia & Zhang, Pan & Chen, Jianqing & Cai, Wei, 2021. "Data driven eco-efficiency evaluation and optimization in industrial production," Energy, Elsevier, vol. 224(C).
    3. Zhang, Xugang & Xu, Lu & Zhang, Hua & Jiang, Zhigang & Wang, Yan, 2021. "Emergy based sustainability evaluation model for retired machineries integrating energy, environmental and social factors," Energy, Elsevier, vol. 235(C).
    4. Tian, Xu & Sarkis, Joseph, 2020. "Expanding green supply chain performance measurement through emergy accounting and analysis," International Journal of Production Economics, Elsevier, vol. 225(C).
    5. Chen, Yu & Liu, Gengyuan & Yan, Ningyu & Yang, Qing & Gao, He & Su, Liya & Santagata, Remo, 2023. "Comprehensive evaluation of urban greenspace ecological values marketability through the spatial relationship between housing price and ecosystem services," Ecological Modelling, Elsevier, vol. 484(C).
    6. Hairuo Wang & Yexin Liu & Junxue Zhang & He Zhang & Li Huang & Dan Xu & Chunxia Zhang, 2022. "Sustainability Investigation in the Building Cement Production System Based on the LCA-Emergy Method," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    7. Junxue Zhang & Lin Ma, 2021. "Urban ecological security dynamic analysis based on an innovative emergy ecological footprint method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16163-16191, November.
    8. Du, Hailong & Yang, Liu & Wang, Wenzhong & Lu, Lunhui & Li, Zhe, 2022. "Emergy theory to quantify the sustainability of large cascade hydropower projects in the upper Yangtze," Ecological Modelling, Elsevier, vol. 468(C).
    9. Liu, Conghu & Cai, Wei & Dinolov, Ognyan & Zhang, Cuixia & Rao, Weizhen & Jia, Shun & Li, Li & Chan, Felix T.S., 2018. "Emergy based sustainability evaluation of remanufacturing machining systems," Energy, Elsevier, vol. 150(C), pages 670-680.
    10. Gokan May & Foivos Psarommatis, 2023. "Maximizing Energy Efficiency in Additive Manufacturing: A Review and Framework for Future Research," Energies, MDPI, vol. 16(10), pages 1-28, May.
    11. Ana Carolina V. Nadalini & Ricardo de Araujo Kalid & Ednildo Andrade Torres, 2021. "Emergy as a Tool to Evaluate Ecosystem Services: A Systematic Review of the Literature," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    12. Shaari, Mohd Shahidan & Majekodunmi, Temitayo B. & Zainal, Nor Fadzilah & Harun, Nor Hidayah & Ridzuan, Abdul Rahim, 2023. "The linkage between natural gas consumption and industrial output: New evidence based on time series analysis," Energy, Elsevier, vol. 284(C).
    13. Tang, Liwei & Luo, Mansi & Li, Ke & Zhang, Fan, 2024. "Driving factors and peaking of CO2 emissions: An empirical analysis of Hunan Province," Energy, Elsevier, vol. 289(C).
    14. Maione, A. & Massarotti, N. & Santagata, R. & Ulgiati, S. & Vanoli, L., 2023. "Integrated environmental accounting of a geothermal grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    15. Cristiano, S. & Ulgiati, S. & Gonella, F., 2021. "Systemic sustainability and resilience assessment of health systems, addressing global societal priorities: Learnings from a top nonprofit hospital in a bioclimatic building in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Pan, Hengyu & Geng, Yong & Jiang, Ping & Dong, Huijuan & Sun, Lu & Wu, Rui, 2018. "An emergy based sustainability evaluation on a combined landfill and LFG power generation system," Energy, Elsevier, vol. 143(C), pages 310-322.
    17. Evariste Rutebuka & Lixiao Zhang & Ernest Frimpong Asamoah & Mingyue Pang & Emmanuel Rukundo, 2018. "Resource Dynamism of the Rwandan Economy: An Emergy Approach," Sustainability, MDPI, vol. 10(6), pages 1-19, May.
    18. Haizhen Wu & Weiguo Fan & Jianchang Lu, 2021. "Researching on the Sustainability of Transportation Industry Based on a Coupled Emergy and System Dynamics Model: A Case Study of Qinghai," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    19. Xu, Wentao & Huang, Yaji & Song, Siheng & Yue, Junfeng & Chen, Bo & Liu, Yuqing & Zou, Yiran, 2023. "A new on-line combustion optimization approach for ultra-supercritical coal-fired boiler to improve boiler efficiency, reduce NOx emission and enhance operating safety," Energy, Elsevier, vol. 282(C).
    20. Jing An & Aitian Tao & He Yang & Ang Tian, 2021. "Sustainability Assessment of the Rare-Earth-Oxide Production Process and Comparison of Environmental Performance Improvements Based on Emergy Analysis," Sustainability, MDPI, vol. 13(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s0360544223035090. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.