IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223033595.html
   My bibliography  Save this article

Gas production from hydrates by CH4-CO2 replacement: Effect of N2 and intermittent heating

Author

Listed:
  • Zhang, Xuemin
  • Zhang, Shanling
  • Yuan, Qing
  • Liu, Qingqing
  • Huang, Tingting
  • Li, Jinping
  • Wu, Qingbai
  • Zhang, Peng

Abstract

Extraction of CH4 gas from Natural Gas Hydrates (NGHs) while storing CO2 by CH4-CO2 replacement method is a promising technique for achieving CO2 emission reduction and CH4 production. However, improving the kinetics and enhancing the replacement efficiency is the fundamental issue for efficient CH4 production and CO2 safe sequestration, which have become the bottlenecks in NGH extraction. In this work, the CO2 replacement characteristics and kinetics process were further elucidated. The effects of small molecule gas (N2) and intermittent heating on the CO2 replacement were quantitatively investigated. And the enhancement mechanism of N2 and intermittent heating on CO2 replacement were deeply analyzed. The results show that as the proportion of N2 increases, the CH4 recovery rate gradually increases, but the CO2 sequestration rate exhibits a pattern of initial increase followed by a decrease. In addition, the intermittent application of heat has been shown to effectively enhance the replacement performance of pure CO2 in porous media. A thicker quasi-liquid layer forms when the temperature of hydrate reservoir approaches the freezing point, making it easier for CO2 gas to form hydrates. Additionally, when intermittent heating is combined with CO2 + N2 replacement, it results in a more significant promotion of CH4 recovery.

Suggested Citation

  • Zhang, Xuemin & Zhang, Shanling & Yuan, Qing & Liu, Qingqing & Huang, Tingting & Li, Jinping & Wu, Qingbai & Zhang, Peng, 2024. "Gas production from hydrates by CH4-CO2 replacement: Effect of N2 and intermittent heating," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223033595
    DOI: 10.1016/j.energy.2023.129965
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223033595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129965?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bilgen, S., 2014. "Structure and environmental impact of global energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 890-902.
    2. Li, Bo & Liu, Sheng-Dong & Liang, Yun-Pei & Liu, Hang, 2018. "The use of electrical heating for the enhancement of gas recovery from methane hydrate in porous media," Applied Energy, Elsevier, vol. 227(C), pages 694-702.
    3. Riley, David & Schaafsma, Marije & Marin-Moreno, Héctor & Minshull, Tim A., 2020. "A social, environmental and economic evaluation protocol for potential gas hydrate exploitation projects," Applied Energy, Elsevier, vol. 263(C).
    4. Wang, Xiao & Pan, Lin & Lau, Hon Chung & Zhang, Ming & Li, Longlong & Zhou, Qiao, 2018. "Reservoir volume of gas hydrate stability zones in permafrost regions of China," Applied Energy, Elsevier, vol. 225(C), pages 486-500.
    5. Yin, Zhenyuan & Huang, Li & Linga, Praveen, 2019. "Effect of wellbore design on the production behaviour of methane hydrate-bearing sediments induced by depressurization," Applied Energy, Elsevier, vol. 254(C).
    6. Gu, Yuhang & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Cao, Xinxin & Liu, Tianle & Qin, Shunbo & Zhang, Ling & Jiang, Guosheng, 2023. "Enhancing gas recovery from natural gas hydrate reservoirs in the eastern Nankai Trough: Deep depressurization and underburden sealing," Energy, Elsevier, vol. 262(PB).
    7. Wan, Kun & Wu, Tian-Wei & Wang, Yi & Li, Xiao-Sen & Liu, Jian-Wu & Kou, Xuan & Feng, Jing-Chun, 2023. "Large-scale experimental study of heterogeneity in different types of hydrate reservoirs by horizontal well depressurization method," Applied Energy, Elsevier, vol. 332(C).
    8. Elshkaki, Ayman, 2023. "The implications of material and energy efficiencies for the climate change mitigation potential of global energy transition scenarios," Energy, Elsevier, vol. 267(C).
    9. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    10. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Xinxin & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Mao, Peixiao & Gu, Yuhang & Li, Yanlong & Zhang, Heen & Yu, Yanjiang & Wu, Nengyou, 2023. "Numerical analysis on gas production performance by using a multilateral well system at the first offshore hydrate production test site in the Shenhu area," Energy, Elsevier, vol. 270(C).
    2. Sergey Misyura & Pavel Strizhak & Anton Meleshkin & Vladimir Morozov & Olga Gaidukova & Nikita Shlegel & Maria Shkola, 2023. "A Review of Gas Capture and Liquid Separation Technologies by CO 2 Gas Hydrate," Energies, MDPI, vol. 16(8), pages 1-20, April.
    3. Yan Li & Alberto Maria Gambelli & Federico Rossi, 2022. "Experimental Study on the Effect of SDS and Micron Copper Particles Mixture on Carbon Dioxide Hydrates Formation," Energies, MDPI, vol. 15(18), pages 1-16, September.
    4. Wan, Qing-Cui & Si, Hu & Li, Bo & Yin, Zhen-Yuan & Gao, Qiang & Liu, Shu & Han, Xiao & Chen, Ling-Ling, 2020. "Energy recovery enhancement from gas hydrate based on the optimization of thermal stimulation modes and depressurization," Applied Energy, Elsevier, vol. 278(C).
    5. Zhang, Qi & Wang, Yanfei, 2023. "Comparisons of different electrical heating assisted depressurization methods for developing the unconfined hydrate deposits in Shenhu area," Energy, Elsevier, vol. 269(C).
    6. Sun, Yi-Fei & Wang, Yun-Fei & Zhong, Jin-Rong & Li, Wen-Zhi & Li, Rui & Cao, Bo-Jian & Kan, Jing-Yu & Sun, Chang-Yu & Chen, Guang-Jin, 2019. "Gas hydrate exploitation using CO2/H2 mixture gas by semi-continuous injection-production mode," Applied Energy, Elsevier, vol. 240(C), pages 215-225.
    7. Wan, Qing-Cui & Yin, Zhenyuan & Gao, Qiang & Si, Hu & Li, Bo & Linga, Praveen, 2022. "Fluid production behavior from water-saturated hydrate-bearing sediments below the quadruple point of CH4 + H2O," Applied Energy, Elsevier, vol. 305(C).
    8. Yin, Zhenyuan & Zhang, Shuyu & Koh, Shanice & Linga, Praveen, 2020. "Estimation of the thermal conductivity of a heterogeneous CH4-hydrate bearing sample based on particle swarm optimization," Applied Energy, Elsevier, vol. 271(C).
    9. Fengyi, Mi & Zhongjin, He & Guosheng, Jiang & Fulong, Ning, 2023. "Molecular insights into the effects of lignin on methane hydrate formation in clay nanopores," Energy, Elsevier, vol. 276(C).
    10. Yang, Mingjun & Zhao, Jie & Zheng, Jia-nan & Song, Yongchen, 2019. "Hydrate reformation characteristics in natural gas hydrate dissociation process: A review," Applied Energy, Elsevier, vol. 256(C).
    11. Olga Gaidukova & Sergey Misyura & Vladimir Morozov & Pavel Strizhak, 2023. "Gas Hydrates: Applications and Advantages," Energies, MDPI, vol. 16(6), pages 1-19, March.
    12. Zhang, Jidong & Yin, Zhenyuan & Li, Qingping & Li, Shuaijun & Wang, Yi & Li, Xiao-Sen, 2023. "Comparison of fluid production between excess-gas and excess-water hydrate-bearing sediments under depressurization and its implication on energy recovery," Energy, Elsevier, vol. 282(C).
    13. Yin, Zhenyuan & Wan, Qing-Cui & Gao, Qiang & Linga, Praveen, 2020. "Effect of pressure drawdown rate on the fluid production behaviour from methane hydrate-bearing sediments," Applied Energy, Elsevier, vol. 271(C).
    14. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    15. Li, Bo & Zhang, Ting-Ting & Wan, Qing-Cui & Feng, Jing-Chun & Chen, Ling-Ling & Wei, Wen-Na, 2021. "Kinetic study of methane hydrate development involving the role of self-preservation effect in frozen sandy sediments," Applied Energy, Elsevier, vol. 300(C).
    16. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    17. Zhang, Xuemin & Zhang, Shanling & Liu, Qingqing & Huang, Tingting & Yang, Huijie & Li, Jinping & Wang, Yingmei & Wu, Qingbai & Chen, Chen, 2024. "Experimental study of gas recovery behaviors from methane hydrate-bearing sediments by CO2 replacement below freezing point," Energy, Elsevier, vol. 288(C).
    18. Liu, Zheng & Zheng, Junjie & Wang, Zhiyuan & Gao, Yonghai & Sun, Baojiang & Liao, Youqiang & Linga, Praveen, 2023. "Effect of clay on methane hydrate formation and dissociation in sediment: Implications for energy recovery from clayey-sandy hydrate reservoirs," Applied Energy, Elsevier, vol. 341(C).
    19. Liu, Jinxiang & Hou, Jian & Xu, Jiafang & Liu, Haiying & Chen, Gang & Zhang, Jun, 2017. "Formation of clathrate cages of sI methane hydrate revealed by ab initio study," Energy, Elsevier, vol. 120(C), pages 698-704.
    20. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223033595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.