IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224012672.html
   My bibliography  Save this article

Sand control during gas production from marine hydrate reservoirs by using microbial-induced carbonate precipitation technology: A feasibility study

Author

Listed:
  • Qin, Shunbo
  • Sun, Jiaxin
  • Liu, Tianle
  • Tang, Chengxiang
  • Lei, Gang
  • Dou, Xiaofeng
  • Gu, Yuhang

Abstract

Sand production is one of the bottleneck problems restricting the safe and efficient production of marine hydrate reservoirs. Current research on this issue mainly focuses on the active sand control methods such as screen mesh and gravel packing, however, passive methods are rarely reported. In this study, a novel sand control strategy which uses microbial-induced carbonate precipitation (MICP) technology to reinforce hydrate reservoirs around the well is proposed. Based on the geological data of hydrate reservoirs in Japan, a reservoir-scale microbial reaction-migration model is established. The feasibility of MICP reinforcement to prevent sand production is demonstrated by the combinations of indoor triaxial testing, productivity prediction and microscopic sand production prediction. The results show that the MICP technology can effectively enhance reservoir strength, and has a negligible impact on the gas recovery. Although the calcium carbonate generated will slightly decrease the porosity and permeability, the cumulative gas production does not significantly decrease and the water extraction is also prevented. Most importantly, the amount of sand production can sharply reduce because of the cementation of calcium carbonate among sand particles. Additionally, the effectiveness and applicability can be improved by selecting appropriate bacteria fixation methods and grouting pressure at different stages.

Suggested Citation

  • Qin, Shunbo & Sun, Jiaxin & Liu, Tianle & Tang, Chengxiang & Lei, Gang & Dou, Xiaofeng & Gu, Yuhang, 2024. "Sand control during gas production from marine hydrate reservoirs by using microbial-induced carbonate precipitation technology: A feasibility study," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012672
    DOI: 10.1016/j.energy.2024.131494
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224012672
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131494?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224012672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.