IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223029018.html
   My bibliography  Save this article

Performance analysis of an organic Rankine cycle with an internal heat exchanger considering turbine pressure ratio and efficiency

Author

Listed:
  • Park, Sang-Chan
  • Son, Chang-Hyo
  • Lee, Ho-Saeng
  • Lim, Seung-Taek
  • Yoon, Ji-Won
  • Choi, Mun-Kyong
  • Seol, Sung-Hoon

Abstract

This study investigated an organic Rankine cycle (ORC) that utilizes waste heat from ships. Steam at 170 °C generated by an economizer and either surface or deep seawater were used as the heat source and heat sink, respectively. Environment-friendly working fluids (hydrofluorocarbons, HFO) and conventional R-245fa were used for comparison. Energy and exergy analyses of the basic ORC and ORC with an internal heat exchanger (IHX) were conducted. In the basic ORC, R-1233zd(E) exhibited the highest efficiency. Comparatively, R-1336mzz-Z showed significantly improved efficiency upon IHX application. The IHX application allowed the working fluids to achieve efficiency improvement and decreased irreversibility of components, thereby increasing exergy efficiency. Although the higher pressure ratio at turbine produced a better output, a clear limitation in increasing pressure ratio more than 3.0 was observed due to the choking phenomenon. A distinguishing characteristic of the IHX cycle is its ability to compensate for efficiency decrease that occurs when lowering the pressure ratio to avoid choking by increasing the superheating degree. At a constant turbine inlet temperature (the sum of evaporation temperature and superheating degree the system efficiency at a pressure ratio of 2.99 was relatively 1.39 % higher than that at 3.58 owing to IHX application.

Suggested Citation

  • Park, Sang-Chan & Son, Chang-Hyo & Lee, Ho-Saeng & Lim, Seung-Taek & Yoon, Ji-Won & Choi, Mun-Kyong & Seol, Sung-Hoon, 2023. "Performance analysis of an organic Rankine cycle with an internal heat exchanger considering turbine pressure ratio and efficiency," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223029018
    DOI: 10.1016/j.energy.2023.129507
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223029018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129507?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Jian & Song, Yin & Gu, Chun-wei, 2015. "Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines," Energy, Elsevier, vol. 82(C), pages 976-985.
    2. Kang, Seok Hun, 2016. "Design and preliminary tests of ORC (organic Rankine cycle) with two-stage radial turbine," Energy, Elsevier, vol. 96(C), pages 142-154.
    3. Meroni, Andrea & Robertson, Miles & Martinez-Botas, Ricardo & Haglind, Fredrik, 2018. "A methodology for the preliminary design and performance prediction of high-pressure ratio radial-inflow turbines," Energy, Elsevier, vol. 164(C), pages 1062-1078.
    4. Yang, Min-Hsiung, 2016. "Optimizations of the waste heat recovery system for a large marine diesel engine based on transcritical Rankine cycle," Energy, Elsevier, vol. 113(C), pages 1109-1124.
    5. Zhou, Aozheng & Li, Xue-song & Ren, Xiao-dong & Song, Jian & Gu, Chun-wei, 2020. "Thermodynamic and economic analysis of a supercritical carbon dioxide (S–CO2) recompression cycle with the radial-inflow turbine efficiency prediction," Energy, Elsevier, vol. 191(C).
    6. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    7. Fu, Jianqin & Liu, Jingping & Feng, Renhua & Yang, Yanping & Wang, Linjun & Wang, Yong, 2013. "Energy and exergy analysis on gasoline engine based on mapping characteristics experiment," Applied Energy, Elsevier, vol. 102(C), pages 622-630.
    8. Yang, Jingye & Ye, Zhenhong & Yu, Binbin & Ouyang, Hongsheng & Chen, Jiangping, 2019. "Simultaneous experimental comparison of low-GWP refrigerants as drop-in replacements to R245fa for Organic Rankine cycle application: R1234ze(Z), R1233zd(E), and R1336mzz(E)," Energy, Elsevier, vol. 173(C), pages 721-731.
    9. Rahbar, Kiyarash & Mahmoud, Saad & Al-Dadah, Raya K. & Moazami, Nima, 2015. "Parametric analysis and optimization of a small-scale radial turbine for Organic Rankine Cycle," Energy, Elsevier, vol. 83(C), pages 696-711.
    10. Larsen, Ulrik & Pierobon, Leonardo & Haglind, Fredrik & Gabrielii, Cecilia, 2013. "Design and optimisation of organic Rankine cycles for waste heat recovery in marine applications using the principles of natural selection," Energy, Elsevier, vol. 55(C), pages 803-812.
    11. Shi, Lingfeng & Shu, Gequn & Tian, Hua & Deng, Shuai, 2018. "A review of modified Organic Rankine cycles (ORCs) for internal combustion engine waste heat recovery (ICE-WHR)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 95-110.
    12. Lion, Simone & Taccani, Rodolfo & Vlaskos, Ioannis & Scrocco, Pietro & Vouvakos, Xenakis & Kaiktsis, Lambros, 2019. "Thermodynamic analysis of waste heat recovery using Organic Rankine Cycle (ORC) for a two-stroke low speed marine Diesel engine in IMO Tier II and Tier III operation," Energy, Elsevier, vol. 183(C), pages 48-60.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gürgen, Samet & Altın, İsmail, 2022. "Novel decision-making strategy for working fluid selection in Organic Rankine Cycle: A case study for waste heat recovery of a marine diesel engine," Energy, Elsevier, vol. 252(C).
    2. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    3. Mat Nawi, Z. & Kamarudin, S.K. & Sheikh Abdullah, S.R. & Lam, S.S., 2019. "The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle," Energy, Elsevier, vol. 166(C), pages 17-31.
    4. Alklaibi, A.M. & Lior, N., 2021. "Waste heat utilization from internal combustion engines for power augmentation and refrigeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Fabio Fatigati & Marco Di Bartolomeo & Davide Di Battista & Roberto Cipollone, 2020. "Experimental Validation of a New Modeling for the Design Optimization of a Sliding Vane Rotary Expander Operating in an ORC-Based Power Unit," Energies, MDPI, vol. 13(16), pages 1-23, August.
    6. Xu, Weicong & Deng, Shuai & Zhao, Li & Zhang, Yue & Li, Shuangjun, 2019. "Performance analysis on novel thermodynamic cycle under the guidance of 3D construction method," Applied Energy, Elsevier, vol. 250(C), pages 478-492.
    7. Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
    8. Enhua Wang & Ningjian Peng, 2023. "A Review on the Preliminary Design of Axial and Radial Turbines for Small-Scale Organic Rankine Cycle," Energies, MDPI, vol. 16(8), pages 1-20, April.
    9. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Zhang, Tao & Ma, Junhua & Zhou, Yanglin & Wang, Yongzhen & Chen, Qifang & Li, Xiaoping & Liu, Liuchen, 2021. "Thermo-economic analysis and optimization of ICE-ORC systems based on a splitter regulation," Energy, Elsevier, vol. 226(C).
    11. Gaylord Carrillo Caballero & Yulineth Cardenas Escorcia & Osvaldo José Venturini & Electo Eduardo Silva Lora & Anibal Alviz Meza & Luis Sebastián Mendoza Castellanos, 2023. "Unidimensional and 3D Analyses of a Radial Inflow Turbine for an Organic Rankine Cycle under Design and Off-Design Conditions," Energies, MDPI, vol. 16(8), pages 1-31, April.
    12. Pallis, Platon & Varvagiannis, Efstratios & Braimakis, Konstantinos & Roumpedakis, Tryfonas & Leontaritis, Aris - Dimitrios & Karellas, Sotirios, 2021. "Development, experimental testing and techno-economic assessment of a fully automated marine organic rankine cycle prototype for jacket cooling water heat recovery," Energy, Elsevier, vol. 228(C).
    13. Meroni, Andrea & Andreasen, Jesper Graa & Persico, Giacomo & Haglind, Fredrik, 2018. "Optimization of organic Rankine cycle power systems considering multistage axial turbine design," Applied Energy, Elsevier, vol. 209(C), pages 339-354.
    14. Lion, Simone & Taccani, Rodolfo & Vlaskos, Ioannis & Scrocco, Pietro & Vouvakos, Xenakis & Kaiktsis, Lambros, 2019. "Thermodynamic analysis of waste heat recovery using Organic Rankine Cycle (ORC) for a two-stroke low speed marine Diesel engine in IMO Tier II and Tier III operation," Energy, Elsevier, vol. 183(C), pages 48-60.
    15. Ye, Zhenhong & Yang, Jingye & Shi, Junye & Chen, Jiangping, 2020. "Thermo-economic and environmental analysis of various low-GWP refrigerants in Organic Rankine cycle system," Energy, Elsevier, vol. 199(C).
    16. Li, Ligeng & Tian, Hua & Shi, Lingfeng & Wang, Jingyu & Li, Min & Shu, Gequn, 2021. "Adaptive flow assignment for CO2 transcritical power cycle (CTPC): An engine operational profile-based off-design study," Energy, Elsevier, vol. 225(C).
    17. Cai, Jinwen & Tian, Hua & Wang, Xuan & Wang, Rui & Shu, Gequn & Wang, Mingtao, 2021. "A calibrated organic Rankine cycle dynamic model applying to subcritical system and transcritical system," Energy, Elsevier, vol. 237(C).
    18. Yao, Yu & Shi, Lingfeng & Tian, Hua & Wang, Xuan & Sun, Xiaocun & Zhang, Yonghao & Wu, Zirui & Sun, Rui & Shu, Gequn, 2022. "Combined cooling and power cycle for engine waste heat recovery using CO2-based mixtures," Energy, Elsevier, vol. 240(C).
    19. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    20. Al Jubori, Ayad M. & Al-Dadah, Raya & Mahmoud, Saad, 2017. "Performance enhancement of a small-scale organic Rankine cycle radial-inflow turbine through multi-objective optimization algorithm," Energy, Elsevier, vol. 131(C), pages 297-311.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223029018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.