IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024933.html
   My bibliography  Save this article

Optimization of liquid cooling heat dissipation control strategy for electric vehicle power batteries based on linear time-varying model predictive control

Author

Listed:
  • Pan, Chaofeng
  • Jia, Zihao
  • Wang, Jian
  • Wang, Limei
  • Wu, Jiaxin

Abstract

The heat dissipation performance of batteries is crucial for electric vehicles, and unreasonable thermal management strategies may lead to reduced battery efficiency and safety issues. Therefore, this paper proposed an optimization strategy for battery thermal management systems (BTMS) based on linear time-varying model predictive control (LTMPC). To begin, based on the results of three-dimensional thermal flow analysis, a reduced order substitution model for the battery cooling system was established. Next, to address the issue of high computational complexity caused by the nonlinear model in the controller, a linearization method based on staged control was designed. Furthermore, the control parameters were optimized using the particle swarm optimization algorithm. Finally, a BTMS physical model based on SIMSCAPE was established for performance simulation. The performance of the logic threshold controller (LTC), linear model predictive controller (LMPC), and nonlinear model predictive controller (NMPC) was compared and analyzed. LTMPC was found to reduce the average temperature of the battery by up to 2.33 °C and 1.90 °C, and the cumulative temperature difference is reduced by 13.9% and 16.6% compared to LTC and NMPC, respectively. Compared to LMPC, LTMPC reduces thermal management energy consumption by 21.2%.

Suggested Citation

  • Pan, Chaofeng & Jia, Zihao & Wang, Jian & Wang, Limei & Wu, Jiaxin, 2023. "Optimization of liquid cooling heat dissipation control strategy for electric vehicle power batteries based on linear time-varying model predictive control," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024933
    DOI: 10.1016/j.energy.2023.129099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024933
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.