IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225007443.html
   My bibliography  Save this article

Energy-thermal collaborative management considering powertrain thermal characteristics for fuel cell vehicles in low-temperature environment

Author

Listed:
  • Song, Dafeng
  • Wu, Qingtao
  • Huang, Yufeng
  • Zeng, Xiaohua
  • Yang, Dongpo

Abstract

In low-temperature environment, conventional energy management strategies (EMS) for fuel cell vehicles (FCVs) aim at minimizing energy consumption, while ignoring the coupling between the fuel cell temperature and its efficiency, as well as that between the fuel cell temperature and the preheating energy consumption of the integrated thermal management system (ITMS). As a result, it is difficult to achieve the optimal. To address this issue, this paper proposes an energy-thermal collaborative hierarchical control strategy (FCT_CETMS) considering the thermal characteristics of fuel cells, aiming to achieve the optimal energy consumption on the premise of not affecting the temperature comfort of passengers and the power sources. Specifically, an energy-thermal coupling optimization problem regarding energy consumption considering the thermal characteristics and temperature control has been established. Then, the problem is solved through the hierarchical strategy. In the upper layer, an energy-thermal collaborative dynamic programming (CETDP) is proposed to obtain the global reference. In the lower layer, an adaptive equivalent consumption minimization strategy (A-ECMS) based on the global SOC guidance and an adaptive active disturbance rejection strategy (A-ADRC) based on the global temperature guidance are put forward to solve the coupling problem. Finally, the proposed strategy is verified through simulation and hardware-in-the-loop (HIL) tests. The results show that compared with the traditional energy dynamic programming (EDP), the energy-thermal collaborative dynamic programming (CETDP) proposed improves the energy-saving limit by 9–13 %. Compared with the benchmark control strategy (BEN_IETMS), the FCT_CETMS proposed in this paper achieves an energy-saving rate of 10.7%–12.5 %, and it can be applied online.

Suggested Citation

  • Song, Dafeng & Wu, Qingtao & Huang, Yufeng & Zeng, Xiaohua & Yang, Dongpo, 2025. "Energy-thermal collaborative management considering powertrain thermal characteristics for fuel cell vehicles in low-temperature environment," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225007443
    DOI: 10.1016/j.energy.2025.135102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225007443
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Song, Dafeng & Wu, Qingtao & Zeng, Xiaohua & Zhang, Xuanming & Qian, Qifeng & Yang, DongPo, 2024. "Feedback-linearization decoupling based coordinated control of air supply and thermal management for vehicular fuel cell system," Energy, Elsevier, vol. 305(C).
    2. Lin, Boqiang & Li, Zheng, 2022. "Towards world's low carbon development: The role of clean energy," Applied Energy, Elsevier, vol. 307(C).
    3. Song, Zhen & Pan, Yue & Chen, Huicui & Zhang, Tong, 2021. "Effects of temperature on the performance of fuel cell hybrid electric vehicles: A review," Applied Energy, Elsevier, vol. 302(C).
    4. Geng, Wenran & Lou, Diming & Wang, Chen & Zhang, Tong, 2020. "A cascaded energy management optimization method of multimode power-split hybrid electric vehicles," Energy, Elsevier, vol. 199(C).
    5. Xu, Nan & Kong, Yan & Yan, Jinyue & Zhang, Yuanjian & Sui, Yan & Ju, Hao & Liu, Heng & Xu, Zhe, 2022. "Global optimization energy management for multi-energy source vehicles based on “Information layer - Physical layer - Energy layer - Dynamic programming” (IPE-DP)," Applied Energy, Elsevier, vol. 312(C).
    6. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang & Shi, Man, 2023. "A novel energy management strategy for hybrid electric bus with fuel cell health and battery thermal- and health-constrained awareness," Energy, Elsevier, vol. 271(C).
    7. Kandidayeni, M. & Macias, A. & Boulon, L. & Kelouwani, S., 2020. "Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies," Applied Energy, Elsevier, vol. 274(C).
    8. Zeng, Tao & Zhang, Caizhi & Zhang, Yanyi & Deng, Chenghao & Hao, Dong & Zhu, Zhongwen & Ran, Hongxu & Cao, Dongpu, 2021. "Optimization-oriented adaptive equivalent consumption minimization strategy based on short-term demand power prediction for fuel cell hybrid vehicle," Energy, Elsevier, vol. 227(C).
    9. Ma, Yan & Ding, Hao & Liu, Yongqin & Gao, Jinwu, 2022. "Battery thermal management of intelligent-connected electric vehicles at low temperature based on NMPC," Energy, Elsevier, vol. 244(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kunang Li & Chunchun Jia & Xuefeng Han & Hongwen He, 2023. "A Novel Minimal-Cost Power Allocation Strategy for Fuel Cell Hybrid Buses Based on Deep Reinforcement Learning Algorithms," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    2. Zou, Yunge & Yang, Yalian & Zhang, Yuxin & Liu, Changdong, 2024. "Computationally efficient assessment of fuel economy of multi-modes and multi-gears hybrid electric vehicles: A hyper rapid dynamic programming approach," Energy, Elsevier, vol. 313(C).
    3. Liu, Zhaoming & Chang, Guofeng & Yuan, Hao & Tang, Wei & Xie, Jiaping & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive look-ahead model predictive control strategy of vehicular PEMFC thermal management," Energy, Elsevier, vol. 285(C).
    4. Xu Wang & Ying Huang & Jian Wang, 2023. "Study on Driver-Oriented Energy Management Strategy for Hybrid Heavy-Duty Off-Road Vehicles under Aggressive Transient Operating Condition," Sustainability, MDPI, vol. 15(9), pages 1-25, May.
    5. Kun He & Dongchen Qin & Jiangyi Chen & Tingting Wang & Hongxia Wu & Peizhuo Wang, 2023. "Adaptive Equivalent Consumption Minimization Strategy for Fuel Cell Buses Based on Driving Style Recognition," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    6. Jia, Chunchun & Li, Kunang & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao, 2023. "Health-aware energy management strategy for fuel cell hybrid bus considering air-conditioning control based on TD3 algorithm," Energy, Elsevier, vol. 283(C).
    7. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2024. "Learning-based model predictive energy management for fuel cell hybrid electric bus with health-aware control," Applied Energy, Elsevier, vol. 355(C).
    8. Anselma, Pier Giuseppe & Belingardi, Giovanni, 2022. "Fuel cell electrified propulsion systems for long-haul heavy-duty trucks: present and future cost-oriented sizing," Applied Energy, Elsevier, vol. 321(C).
    9. Zhiming Zhang & Alexander Rex & Jiaming Zhou & Xinfeng Zhang & Gangqiang Huang & Jinming Zhang & Tong Zhang, 2023. "Dynamic Simulation Model and Experimental Validation of One Passive Fuel Cell–Battery Hybrid Powertrain for an Electric Light Scooter," Sustainability, MDPI, vol. 15(17), pages 1-19, September.
    10. Jia, Chunchun & Zhou, Jiaming & He, Hongwen & Li, Jianwei & Wei, Zhongbao & Li, Kunang & Shi, Man, 2023. "A novel energy management strategy for hybrid electric bus with fuel cell health and battery thermal- and health-constrained awareness," Energy, Elsevier, vol. 271(C).
    11. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    12. Deng, Jin & Li, Kuo & Fu, Xiaolan & Feng, Youneng & Yuan, Shenfu, 2025. "Effects of Na and Ca on gaseous products evolution behaviors for Fe catalyzed lignite pyrolysis volatiles reforming," Energy, Elsevier, vol. 320(C).
    13. Pei, Yaowang & Chen, Fengxiang & Jiao, Jieran & Ye, Huan & Zhang, Caizhi & Jiang, Xiaojie, 2024. "Fuel cell temperature control based on nonlinear transformation mitigating system nonlinearity," Renewable Energy, Elsevier, vol. 230(C).
    14. Liu, Huanlong & Wang, Xu & Tian, Hao & Gan, Shicheng & Zhou, Jianyi & Wang, Jiawei, 2024. "Energy-saving starting method of electric motor based on the battery-accumulator hybrid drive," Energy, Elsevier, vol. 286(C).
    15. Guorong Chen & Shiyi Fang & Qibo Chen & Yun Zhang, 2023. "Risk Spillovers and Network Connectedness between Clean Energy Stocks, Green Bonds, and Other Financial Assets: Evidence from China," Energies, MDPI, vol. 16(20), pages 1-21, October.
    16. Sun, Xilei & Zhou, Feng & Fu, Jianqin & Liu, Jingping, 2024. "Experiment and simulation study on energy flow characteristics of a battery electric vehicle throughout the entire driving range in low-temperature conditions," Energy, Elsevier, vol. 292(C).
    17. Wu, Jinglai & Zhang, Yunqing & Ruan, Jiageng & Liang, Zhaowen & Liu, Kai, 2023. "Rule and optimization combined real-time energy management strategy for minimizing cost of fuel cell hybrid electric vehicles," Energy, Elsevier, vol. 285(C).
    18. Kofler, Sandro & Jakubek, Stefan & Hametner, Christoph, 2025. "Predictive energy management strategy with optimal stack start/stop control for fuel cell vehicles," Applied Energy, Elsevier, vol. 377(PB).
    19. Zhang, Dongfang & Sun, Wei & Zou, Yuan & Zhang, Xudong, 2025. "Energy management in HDHEV with dual APUs: Enhancing soft actor-critic using clustered experience replay and multi-dimensional priority sampling," Energy, Elsevier, vol. 319(C).
    20. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2023. "A novel health-aware deep reinforcement learning energy management for fuel cell bus incorporating offline high-quality experience," Energy, Elsevier, vol. 282(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225007443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.