IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v361y2024ics0306261924003118.html
   My bibliography  Save this article

Two-level optimization strategy for vehicle speed and battery thermal management in connected and automated EVs

Author

Listed:
  • Ma, Yan
  • Ma, Qian
  • Liu, Yongqin
  • Gao, Jinwu
  • Chen, Hong

Abstract

The performance of the battery is affected by temperature, and the battery thermal management (BTM) system consumes considerable energy to maintain the temperature in the suitable range. The unnecessary acceleration and deceleration of electric vehicles (EVs) during driving causes higher energy consumption in the powertrain. The emergence of connected and automated vehicle (CAV) technology provides an opportunity for predictive control of thermal and energy management. To explore the coordination optimization between battery thermal and vehicle energy management, this article proposes a two-level optimization framework for the speed and BTM of EVs, which improves energy efficiency and battery safety. Each level consists of a sequential optimization of speed and battery thermal. In the upper layer, speed planning based on iterative dynamic programming (IDP) is first proposed to reduce powertrain energy consumption using intelligent traffic information. Then, based on the BTM system and the battery thermodynamics features, the long-term optimal trajectory of the battery temperature is derived according to optimized speed. In the lower layer, the model predictive controllers (MPC) are designed to track reference speed and temperature trajectories in real-time and enforce energy saving. Meanwhile, to improve the prediction accuracy of the system model, we integrate the Gaussian process (GP) model in the MPC and build the learning-based MPC strategy. Simulation results verify the performance of the proposed method which reduces the powertrain energy consumption by 20.95%. In the high and low temperature environment, compared with normal MPC, PID-based and Rule-based, it reduces BTM energy consumption by up to 15.69%, 29.68% and 38.73%.

Suggested Citation

  • Ma, Yan & Ma, Qian & Liu, Yongqin & Gao, Jinwu & Chen, Hong, 2024. "Two-level optimization strategy for vehicle speed and battery thermal management in connected and automated EVs," Applied Energy, Elsevier, vol. 361(C).
  • Handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003118
    DOI: 10.1016/j.apenergy.2024.122928
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003118
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.122928?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:361:y:2024:i:c:s0306261924003118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.