IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v281y2023ics0360544223015876.html
   My bibliography  Save this article

Performance improvement of a double tube heat exchanger using novel electromagnetic vibration (EMV) method in the presence of Al2O3-water and CuO-water nanofluid; An experimental study

Author

Listed:
  • Mashoofi Maleki, Nemat
  • Pourahmad, Saman
  • Haghighi Khoshkhoo, Ramin
  • Ameri, Mohammad

Abstract

In this research, the novel approach of the electromagnetic vibration (EMV) method was utilized for the first time to increase heat transfer in a double-tube heat exchanger (DTHEX). In this method, a magnetic turbulator (comprising a magnet and an oscillator) was installed inside a central tube that vibrated using an AC magnetic field. The influences of various parameters such as the geometry of the oscillator, magnet position, employing nanofluids, and fluid flow were assessed on the thermal-frictional behavior. The thermal enhancement factor (TEF) was assessed to select the optimal option. The studied options were economically evaluated based on energy efficiency. According to the results, the maximum heat transfer rate could be achieved when the magnet is positioned at 0.374. L from the tube inlet. The highest value observed for overall heat transfer was related to CuO-water 1% nanofluid, which was 277.5% more than simple heat exchanger. Also, the findings showed that heat transfer can be increased up to 13.3 times the energy used and reached to TEF = 3.92, which is a very significant number. Regarding the high potential of the EMV in reaching high thermal performance, it can be utilized as a game changer to save materials, energy, and compaction of the heat exchangers and solar systems.

Suggested Citation

  • Mashoofi Maleki, Nemat & Pourahmad, Saman & Haghighi Khoshkhoo, Ramin & Ameri, Mohammad, 2023. "Performance improvement of a double tube heat exchanger using novel electromagnetic vibration (EMV) method in the presence of Al2O3-water and CuO-water nanofluid; An experimental study," Energy, Elsevier, vol. 281(C).
  • Handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223015876
    DOI: 10.1016/j.energy.2023.128193
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223015876
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128193?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alam, Tabish & Kim, Man-Hoe, 2018. "A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 813-839.
    2. Li, Nianqi & Chen, Jian & Cheng, Tao & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Wang, Qiuwang & Yang, Weisheng & Liu, Xia & Zeng, Min, 2020. "Analysing thermal-hydraulic performance and energy efficiency of shell-and-tube heat exchangers with longitudinal flow based on experiment and numerical simulation," Energy, Elsevier, vol. 202(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sylwia Wciślik & Dawid Taler, 2024. "Economic and Exergy Analysis of TiO 2 + SiO 2 Ethylene-Glycol-Based Hybrid Nanofluid in Plate Heat Exchange System of Solar Installation," Energies, MDPI, vol. 17(13), pages 1-32, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jafari, Davoud & Wits, Wessel W., 2018. "The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 420-442.
    2. Martí Comamala & Ivan Ruiz Cózar & Albert Massaguer & Eduard Massaguer & Toni Pujol, 2018. "Effects of Design Parameters on Fuel Economy and Output Power in an Automotive Thermoelectric Generator," Energies, MDPI, vol. 11(12), pages 1-28, November.
    3. Zhang, Wujie & Yang, Fubin & Zhang, Hongguang & Ping, Xu & Yan, Dong & Wang, Chongyao, 2022. "Application of two-phase pulsating flow in organic Rankine cycle system for diesel engine waste heat recovery," Energy, Elsevier, vol. 243(C).
    4. Liu, Hanyu & Xi, Kun & Xie, Zhihui & Lu, Zhuoqun & Chen, Huawei & Zhang, Jian & Ge, Yanlin, 2023. "Constructal design of double-layer asymmetric flower baffles," Energy, Elsevier, vol. 280(C).
    5. Said, Zafar & El Haj Assad, M. & Hachicha, Ahmed Amine & Bellos, Evangelos & Abdelkareem, Mohammad Ali & Alazaizeh, Duha Zeyad & Yousef, Bashria A.A., 2019. "Enhancing the performance of automotive radiators using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 183-194.
    6. Mahir Faris Abdullah & Rozli Zulkifli & Hazim Moria & Asmaa Soheil Najm & Zambri Harun & Shahrir Abdullah & Wan Aizon Wan Ghopa & Noor Humam Sulaiman, 2021. "Assessment of TiO 2 Nanoconcentration and Twin Impingement Jet of Heat Transfer Enhancement—A Statistical Approach Using Response Surface Methodology," Energies, MDPI, vol. 14(3), pages 1-29, January.
    7. Mousa, Mohamed H. & Miljkovic, Nenad & Nawaz, Kashif, 2021. "Review of heat transfer enhancement techniques for single phase flows," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Feng, Zhenfei & Jiang, Ping & Zheng, Siyao & Zhang, Qingyuan & Chen, Zhen & Guo, Fangwen & Zhang, Jinxin, 2023. "Experimental and numerical investigations on the effects of insertion-type longitudinal vortex generators on flow and heat transfer characteristics in square minichannels," Energy, Elsevier, vol. 278(PA).
    9. Li, Nianqi & Klemeš, Jiří Jaromír & Sunden, Bengt & Wang, Qiuwang & Zeng, Min, 2022. "Heat exchanger network optimisation considering different shell-side flow arrangements," Energy, Elsevier, vol. 261(PA).
    10. Wojciech Judt, 2020. "Numerical and Experimental Analysis of Heat Transfer for Solid Fuels Combustion in Fixed Bed Conditions," Energies, MDPI, vol. 13(22), pages 1-18, November.
    11. Men, Yukui & Liang, Caihang & Hu, Jiali & Zhang, Rui & He, Zhipeng & Zeng, Si & Sun, Tiezhu & Chen, Bo, 2023. "Energy, exergy, economic and environmental analysis of a solar-driven hollow fibre membrane dehumidification system," Renewable Energy, Elsevier, vol. 217(C).
    12. Zhe Wang & Fenghui Han & Yulong Ji & Wenhua Li, 2020. "Performance and Exergy Transfer Analysis of Heat Exchangers with Graphene Nanofluids in Seawater Source Marine Heat Pump System," Energies, MDPI, vol. 13(7), pages 1-17, April.
    13. Seferlis, Panos & Varbanov, Petar Sabev & Papadopoulos, Athanasios I. & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2021. "Sustainable design, integration, and operation for energy high-performance process systems," Energy, Elsevier, vol. 224(C).
    14. Chen, Jingtan & Ahmad, Shakeel & Cai, Junjie & Liu, Huaqiang & Lau, Kwun Ting & Zhao, Jiyun, 2021. "Latest progress on nanotechnology aided boiling heat transfer enhancement: A review," Energy, Elsevier, vol. 215(PA).
    15. He, Ziqiang & Yan, Yunfei & Zhang, Zhien, 2021. "Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: A review," Energy, Elsevier, vol. 216(C).
    16. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    17. Kumar, Rajneesh, 2024. "Improved solar-thermal heat exchanger for space heating with surface roughness: A numerical parametric investigation and its optimization," Renewable Energy, Elsevier, vol. 226(C).
    18. Wang, Bohong & Klemeš, Jiří Jaromír & Li, Nianqi & Zeng, Min & Varbanov, Petar Sabev & Liang, Yongtu, 2021. "Heat exchanger network retrofit with heat exchanger and material type selection: A review and a novel method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    19. Gürdal, Mehmet & Arslan, Kamil & Gedik, Engin & Minea, Alina Adriana, 2022. "Effects of using nanofluid, applying a magnetic field, and placing turbulators in channels on the convective heat transfer: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    20. Ajagekar, Akshay & You, Fengqi, 2019. "Quantum computing for energy systems optimization: Challenges and opportunities," Energy, Elsevier, vol. 179(C), pages 76-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:281:y:2023:i:c:s0360544223015876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.