IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipbs0360544222023878.html
   My bibliography  Save this article

Cellulose nanofibrous/MXene aerogel encapsulated phase change composites with excellent thermal energy conversion and storage capacity

Author

Listed:
  • Quan, Bingqing
  • Wang, Jinzhi
  • Li, Yi
  • Sui, Miao
  • Xie, Heng
  • Liu, Zhigang
  • Wu, Hao
  • Lu, Xiang
  • Tong, Yi

Abstract

Phase change materials (PCMs) have emerged as the most efficient thermal energy storage solutions due to their unique energy storage properties, but they inevitably have shortcomings such as easy leakage and single thermal energy conversion method. In order to solve these problems and expand the application scope of PCMs in the field of thermal energy storage, using cellulose nanofibers, MXene, PEG, and Fe3O4 as raw materials, combined with simple freeze-drying and vacuum impregnation techniques, a series of phase change composites (PCCs) with excellent solar/magnetothermal conversion properties were prepared. The solar-to-thermal conversion efficiencies of PCCs exceed 97.16%, and the lowest enthalpy value can still reach 151 J/g. When the content of Fe3O4 is 15%, the PCC exhibits good magnetothermal conversion ability, which can perform magnetothermal fast charging, and the PCC can rise from 17 °C to 85 °C in 130 s. Moreover, the PCCs have excellent thermal stability, which can remain stable below 350 °C, and the enthalpies value of the PCCs hardly decrease after 1000 cycles, showing great practical application value.

Suggested Citation

  • Quan, Bingqing & Wang, Jinzhi & Li, Yi & Sui, Miao & Xie, Heng & Liu, Zhigang & Wu, Hao & Lu, Xiang & Tong, Yi, 2023. "Cellulose nanofibrous/MXene aerogel encapsulated phase change composites with excellent thermal energy conversion and storage capacity," Energy, Elsevier, vol. 262(PB).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222023878
    DOI: 10.1016/j.energy.2022.125505
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222023878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Shuai & Feng, Daili & Shi, Lei & Wang, Li & Jin, Yingai & Tian, Limei & Li, Ziyuan & Wang, Guoyong & Zhao, Lei & Yan, Yuying, 2021. "A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Huo, Jinhua & Zhang, Ruizhi & Yu, Baisong & Che, Yuanjun & Wu, Zhansheng & Zhang, Xing & Peng, Zhigang, 2022. "Preparation, characterization, investigation of phase change micro-encapsulated thermal control material used for energy storage and temperature regulation in deep-water oil and gas development," Energy, Elsevier, vol. 239(PD).
    3. Li, Bingmeng & Shu, Dan & Wang, Ruifang & Zhai, Lanlan & Chai, Yuye & Lan, Yunjun & Cao, Hongwei & Zou, Chao, 2020. "Polyethylene glycol/silica (PEG@SiO2) composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage," Renewable Energy, Elsevier, vol. 145(C), pages 84-92.
    4. Guo, Junfei & Liu, Zhan & Yang, Bo & Yang, Xiaohu & Yan, Jinyue, 2022. "Melting assessment on the angled fin design for a novel latent heat thermal energy storage tube," Renewable Energy, Elsevier, vol. 183(C), pages 406-422.
    5. Wu, Tingting & Hu, Yanxin & Rong, Huiqiang & Wang, Changhong, 2021. "SEBS-based composite phase change material with thermal shape memory for thermal management applications," Energy, Elsevier, vol. 221(C).
    6. Yongyu Lu & Dehai Yu & Haoxuan Dong & Jinran Lv & Lichen Wang & He Zhou & Zhen Li & Jing Liu & Zhizhu He, 2022. "Magnetically tightened form-stable phase change materials with modular assembly and geometric conformality features," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    7. Yang, Xiaohu & Guo, Junfei & Yang, Bo & Cheng, Haonan & Wei, Pan & He, Ya-Ling, 2020. "Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit," Applied Energy, Elsevier, vol. 279(C).
    8. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    9. Liu, Lu & Zhang, Xuelai & Xu, Xiaofeng & Lin, Xiangwei & Zhao, Yi & Zou, Lingeng & Wu, Yifan & Zheng, Huifan, 2021. "Development of low-temperature eutectic phase change material with expanded graphite for vaccine cold chain logistics," Renewable Energy, Elsevier, vol. 179(C), pages 2348-2358.
    10. Khanna, Sakshum & Paneliya, Sagar & Prajapati, Parth & Mukhopadhyay, Indrajit & Jouhara, Hussam, 2022. "Ultra-stable silica/exfoliated graphite encapsulated n-hexacosane phase change nanocomposite: A promising material for thermal energy storage applications," Energy, Elsevier, vol. 250(C).
    11. Wang, Chaoming & Chen, Ke & Huang, Jun & Cai, Zhengyu & Hu, Zhanjiang & Wang, Tingjun, 2019. "Thermal behavior of polyethylene glycol based phase change materials for thermal energy storage with multiwall carbon nanotubes additives," Energy, Elsevier, vol. 180(C), pages 873-880.
    12. Chao, Weixiang & Yang, Haiyue & Cao, Guoliang & Sun, Xiaohan & Wang, Xin & Wang, Chengyu, 2020. "Carbonized wood flour matrix with functional phase change material composite for magnetocaloric-assisted photothermal conversion and storage," Energy, Elsevier, vol. 202(C).
    13. Zhao, Siyi & Li, Jinhong & Wu, Yifan & Song, Shuang & Liu, Lijie, 2021. "Three-dimensional interconnected porous TiO2 ceramics for high-temperature thermal storage," Renewable Energy, Elsevier, vol. 178(C), pages 701-708.
    14. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    15. Zhang, Hongyun & Wang, Lingling & Xi, Shaobo & Xie, Huaqing & Yu, Wei, 2021. "3D porous copper foam-based shape-stabilized composite phase change materials for high photothermal conversion, thermal conductivity and storage," Renewable Energy, Elsevier, vol. 175(C), pages 307-317.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Ruijin & Wan, Minghan & Zhou, Tian & Zheng, Nianben & Sun, Zhiqiang, 2024. "Graphene-enhanced phase change material systems: Minimizing optical and thermal losses for solar thermal applications," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Changhui & Xiao, Tong & Zhao, Jiateng & Liu, Qingyi & Sun, Wenjie & Guo, Chenglong & Ali, Hafiz Muhammad & Chen, Xiao & Rao, Zhonghao & Gu, Yanlong, 2023. "Polymer engineering in phase change thermal storage materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    2. Guo, Junfei & Liu, Zhan & Du, Zhao & Yu, Jiabang & Yang, Xiaohu & Yan, Jinyue, 2021. "Effect of fin-metal foam structure on thermal energy storage: An experimental study," Renewable Energy, Elsevier, vol. 172(C), pages 57-70.
    3. Naveed Hassan & Manickam Minakshi & Willey Yun Hsien Liew & Amun Amri & Zhong-Tao Jiang, 2023. "Thermal Characterization of Binary Calcium-Lithium Chloride Salts for Thermal Energy Storage at High Temperature," Energies, MDPI, vol. 16(12), pages 1-16, June.
    4. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    5. Fan, Ruijin & Wan, Minghan & Zhou, Tian & Zheng, Nianben & Sun, Zhiqiang, 2024. "Graphene-enhanced phase change material systems: Minimizing optical and thermal losses for solar thermal applications," Energy, Elsevier, vol. 289(C).
    6. Li, Jiayin & Hu, Xiaowu & Zhang, Chuge & Luo, Wenxing & Jiang, Xiongxin, 2021. "Enhanced thermal performance of phase-change materials supported by mesoporous silica modified with polydopamine/nano-metal particles for thermal energy storage," Renewable Energy, Elsevier, vol. 178(C), pages 118-127.
    7. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    8. Tavakoli, Ali & Hashemi, Javad & Najafian, Mahyar & Ebrahimi, Amin, 2023. "Physics-based modelling and data-driven optimisation of a latent heat thermal energy storage system with corrugated fins," Renewable Energy, Elsevier, vol. 217(C).
    9. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Chen, Chuanqi & Wang, Tengyue & Liang, Lin, 2023. "Experimental and numerical studies of thermal transport in a latent heat storage unit with a plate fin and a flat heat pipe," Energy, Elsevier, vol. 275(C).
    10. Liu, Zhan & Liu, Zihui & Guo, Junfei & Wang, Fan & Yang, Xiaohu & Yan, Jinyue, 2022. "Innovative ladder-shaped fin design on a latent heat storage device for waste heat recovery," Applied Energy, Elsevier, vol. 321(C).
    11. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    12. Zhang, Shuai & Li, Ying & Yan, Yuying, 2024. "Hybrid sensible-latent heat thermal energy storage using natural stones to enhance heat transfer: Energy, exergy, and economic analysis," Energy, Elsevier, vol. 286(C).
    13. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    14. Vítor Leal & Raul Teixeira, 2020. "PoDIT: Portable Device for Indoor Temperature Stabilization: Concept and Theoretical Performance Assessment," Energies, MDPI, vol. 13(22), pages 1-15, November.
    15. Liu, Chenzhen & Cheng, Qingjiang & Li, Baohuan & Liu, Xinjian & Rao, Zhonghao, 2023. "Recent advances of sugar alcohols phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    16. Wang, Zeyu & Diao, Yanhua & Zhao, Yaohua & Wang, Tengyue & Liang, Lin & Chi, Yuying, 2018. "Experimental investigation of an integrated collector–storage solar air heater based on the lap joint-type flat micro-heat pipe arrays," Energy, Elsevier, vol. 160(C), pages 924-939.
    17. Sara Pascual & Pilar Lisbona & Luis M. Romeo, 2022. "Thermal Energy Storage in Concentrating Solar Power Plants: A Review of European and North American R&D Projects," Energies, MDPI, vol. 15(22), pages 1-32, November.
    18. Liu, Lu & Zhang, Xuelai & Lin, Xiangwei, 2022. "Experimental investigations on the thermal performance and phase change hysteresis of low-temperature paraffin/MWCNTs/SDBS nanocomposite via dynamic DSC method," Renewable Energy, Elsevier, vol. 187(C), pages 572-585.
    19. Nora Cadau & Andrea De Lorenzi & Agostino Gambarotta & Mirko Morini & Michele Rossi, 2019. "Development and Analysis of a Multi-Node Dynamic Model for the Simulation of Stratified Thermal Energy Storage," Energies, MDPI, vol. 12(22), pages 1-22, November.
    20. Zhang, Shuai & Yan, Yuying, 2022. "Evaluation of discharging performance of molten salt/ceramic foam composite phase change material in a shell-and-tube latent heat thermal energy storage unit," Renewable Energy, Elsevier, vol. 198(C), pages 1210-1223.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pb:s0360544222023878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.