IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v252y2022ics0360544222008234.html
   My bibliography  Save this article

Long-term dynamic allocation and maintenance planning of modular equipment to enhance gas field production flexibility

Author

Listed:
  • Hong, Bingyuan
  • Cui, Xuemeng
  • Wang, Bohong
  • Fan, Di
  • Li, Xiaoping
  • Gong, Jing

Abstract

Modular equipment is becoming popular in unconventional gas field development due to cost savings and flexibility in capacity adjustment by dynamic allocation. It is necessary to make long-term investment and maintenance planning to give full play to the advantages of modular equipment. This paper fills the gap of considering individual scheduling and the impact of utilization time on the value of the equipment in the unconventional gas field development by presenting a comprehensive method that considers the various costs of modular equipment and can facilitate tracking the usage of the equipment. A mixed integer linear programming model is developed to get the solution for the modular equipment, including the processing capacity selection, the installation and use plans, mobile scheduling, and depreciation sale plan, to enhance gas field production flexibility and achieve the best net present value. The changes of production and market demand, and the impact of utilization time on equipment depreciation are taken into account comprehensively. A real case study is used to prove the practicality and advantages of the proposed model. The results show the equipment utilization rate has been increased from 60% to 75%, achieving 10% higher economic benefits when using modular equipment compared with the traditional method in gas field production. In addition, the sensitivity analysis is implemented to investigate the influence of uncertain parameters such as output and market demand, equipment service life, and type of equipment on the equipment dynamic allocation and the economic performance. This study provides a powerful decision-making tool for gas field development to reduce costs, increase efficiency and promote clean practical production.

Suggested Citation

  • Hong, Bingyuan & Cui, Xuemeng & Wang, Bohong & Fan, Di & Li, Xiaoping & Gong, Jing, 2022. "Long-term dynamic allocation and maintenance planning of modular equipment to enhance gas field production flexibility," Energy, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222008234
    DOI: 10.1016/j.energy.2022.123920
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222008234
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123920?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bingyuan Hong & Yanbo Li & Xiaoping Li & Shuaipeng Ji & Yafeng Yu & Di Fan & Yating Qian & Jian Guo & Jing Gong, 2021. "Numerical Simulation of Gas-Solid Two-Phase Erosion for Elbow and Tee Pipe in Gas Field," Energies, MDPI, vol. 14(20), pages 1-18, October.
    2. Hong, Bingyuan & Li, Xiaoping & Song, Shangfei & Chen, Shilin & Zhao, Changlong & Gong, Jing, 2020. "Optimal planning and modular infrastructure dynamic allocation for shale gas production," Applied Energy, Elsevier, vol. 261(C).
    3. Tan, Siah Hong & Barton, Paul I., 2015. "Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, part I: Bakken shale play case study," Energy, Elsevier, vol. 93(P2), pages 1581-1594.
    4. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2017. "Generation expansion planning with high share of renewables of variable output," Applied Energy, Elsevier, vol. 190(C), pages 1275-1288.
    5. Wang, Xucen & Li, Min & Cai, Liuxi & Li, Yun, 2020. "Propane and iso-butane pre-cooled mixed refrigerant liquefaction process for small-scale skid-mounted natural gas liquefaction," Applied Energy, Elsevier, vol. 275(C).
    6. Chin, Hon Huin & Wang, Bohong & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Zeng, Min & Wang, Qiu-Wang, 2020. "Long-term investment and maintenance planning for heat exchanger network retrofit," Applied Energy, Elsevier, vol. 279(C).
    7. Calderón, Andrés J. & Guerra, Omar J. & Papageorgiou, Lazaros G. & Reklaitis, Gintaras V., 2018. "Disclosing water-energy-economics nexus in shale gas development," Applied Energy, Elsevier, vol. 225(C), pages 710-731.
    8. Lee, Sunghoon & Kim, Jin-Kuk, 2020. "Process-integrated design of a sub-ambient membrane process for CO2 removal from natural gas power plants," Applied Energy, Elsevier, vol. 260(C).
    9. He, Tianbiao & Ju, Yonglin, 2014. "A novel conceptual design of parallel nitrogen expansion liquefaction process for small-scale LNG (liquefied natural gas) plant in skid-mount packages," Energy, Elsevier, vol. 75(C), pages 349-359.
    10. Tan, Siah Hong & Barton, Paul I., 2016. "Optimal dynamic allocation of mobile plants to monetize associated or stranded natural gas, part II: Dealing with uncertainty," Energy, Elsevier, vol. 96(C), pages 461-467.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong, Bingyuan & Cui, Xuemeng & Peng, Donghua & Zhou, Mengxi & He, Zhouying & Yao, Hanze & Xu, Yupeng & Gong, Jing & Zhang, Hongyu & Li, Xiaoping, 2024. "Distributed or centralized? Long-term dynamic allocation and maintenance planning of modular equipment to produce multi-product natural gas based on life cycle thinking," Energy, Elsevier, vol. 288(C).
    2. Yin, Xiong & Wen, Kai & Huang, Weihe & Luo, Yinwei & Ding, Yi & Gong, Jing & Gao, Jianfeng & Hong, Bingyuan, 2023. "A high-accuracy online transient simulation framework of natural gas pipeline network by integrating physics-based and data-driven methods," Applied Energy, Elsevier, vol. 333(C).
    3. Wen, Kai & Qiao, Dan & Nie, Chaofei & Lu, Yangfan & Wen, Feng & Zhang, Jing & Miao, Qing & Gong, Jing & Li, Cuicui & Hong, Bingyuan, 2023. "Multi-period supply and demand balance of large-scale and complex natural gas pipeline network: Economy and environment," Energy, Elsevier, vol. 264(C).
    4. Hong, Bingyuan & Du, Zhaonan & Qiao, Dan & Liu, Daiwei & Li, Yu & Sun, Xiaoqing & Gong, Jing & Zhang, Hongyu & Li, Xiaoping, 2024. "Sustainable supply chain of distributed multi-product gas fields based on skid-mounted equipment to dynamically respond to upstream and market fluctuations," Energy, Elsevier, vol. 292(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Bingyuan & Cui, Xuemeng & Peng, Donghua & Zhou, Mengxi & He, Zhouying & Yao, Hanze & Xu, Yupeng & Gong, Jing & Zhang, Hongyu & Li, Xiaoping, 2024. "Distributed or centralized? Long-term dynamic allocation and maintenance planning of modular equipment to produce multi-product natural gas based on life cycle thinking," Energy, Elsevier, vol. 288(C).
    2. Hong, Bingyuan & Li, Xiaoping & Song, Shangfei & Chen, Shilin & Zhao, Changlong & Gong, Jing, 2020. "Optimal planning and modular infrastructure dynamic allocation for shale gas production," Applied Energy, Elsevier, vol. 261(C).
    3. Cao, Xuewen & Yang, Jian & Zhang, Yue & Gao, Song & Bian, Jiang, 2022. "Process optimization, exergy and economic analysis of boil-off gas re-liquefaction processes for LNG carriers," Energy, Elsevier, vol. 242(C).
    4. Wen, Kai & Lu, Yangfan & Lu, Meitong & Zhang, Wenwei & Zhu, Ming & Qiao, Dan & Meng, Fanpeng & Zhang, Jing & Gong, Jing & Hong, Bingyuan, 2022. "Multi-period optimal infrastructure planning of natural gas pipeline network system integrating flowrate allocation," Energy, Elsevier, vol. 257(C).
    5. Noor Yusuf & Tareq Al-Ansari, 2023. "Current and Future Role of Natural Gas Supply Chains in the Transition to a Low-Carbon Hydrogen Economy: A Comprehensive Review on Integrated Natural Gas Supply Chain Optimisation Models," Energies, MDPI, vol. 16(22), pages 1-33, November.
    6. Hong, Bingyuan & Du, Zhaonan & Qiao, Dan & Liu, Daiwei & Li, Yu & Sun, Xiaoqing & Gong, Jing & Zhang, Hongyu & Li, Xiaoping, 2024. "Sustainable supply chain of distributed multi-product gas fields based on skid-mounted equipment to dynamically respond to upstream and market fluctuations," Energy, Elsevier, vol. 292(C).
    7. Tan, Siah Hong & Barton, Paul I., 2017. "Optimal shale oil and gas investments in the United States," Energy, Elsevier, vol. 141(C), pages 398-422.
    8. Allman, Andrew & Zhang, Qi, 2020. "Dynamic location of modular manufacturing facilities with relocation of individual modules," European Journal of Operational Research, Elsevier, vol. 286(2), pages 494-507.
    9. Jin, Chunhe & Yuan, Yilong & Son, Heechang & Lim, Youngsub, 2022. "Novel propane-free mixed refrigerant integrated with nitrogen expansion natural gas liquefaction process for offshore units," Energy, Elsevier, vol. 238(PA).
    10. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    11. Kazemi, Abolghasem & Moreno, Jovita & Iribarren, Diego, 2023. "Economic optimization and comparative environmental assessment of natural gas combined cycle power plants with CO2 capture," Energy, Elsevier, vol. 277(C).
    12. Zhang, Huaiyuan & Liao, Kai & Yang, Jianwei & Zheng, Shunwei & He, Zhengyou, 2024. "Frequency-constrained expansion planning for wind and photovoltaic power in wind-photovoltaic-hydro-thermal multi-power system," Applied Energy, Elsevier, vol. 356(C).
    13. Li, Nianqi & Klemeš, Jiří Jaromír & Sunden, Bengt & Wu, Zan & Wang, Qiuwang & Zeng, Min, 2022. "Heat exchanger network synthesis considering detailed thermal-hydraulic performance: Methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Bingyuan Hong & Xiaoping Li & Yanbo Li & Yu Li & Yafeng Yu & Yumo Wang & Jing Gong & Dihui Ai, 2021. "Numerical Simulation of Elbow Erosion in Shale Gas Fields under Gas-Solid Two-Phase Flow," Energies, MDPI, vol. 14(13), pages 1-15, June.
    15. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    16. Uwitonze, Hosanna & Chaniago, Yus Donald & Lim, Hankwon, 2022. "Novel integrated energy-efficient dual-effect single mixed refrigerant and NGLs recovery process for small-scale natural gas processing plant," Energy, Elsevier, vol. 254(PA).
    17. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    18. Yin, Liang & Ju, Yonglin, 2020. "Conceptual design and analysis of a novel process for BOG re-liquefaction combined with absorption refrigeration cycle," Energy, Elsevier, vol. 205(C).
    19. Niina Helistö & Juha Kiviluoma & Hannele Holttinen & Jose Daniel Lara & Bri‐Mathias Hodge, 2019. "Including operational aspects in the planning of power systems with large amounts of variable generation: A review of modeling approaches," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    20. Eduardo Alarcon-Gerbier & Zarina Chokparova & Nassim Ghondaghsaz & Wanqi Zhao & Hani Shahmoradi-Moghadam & Uwe Aßmann & Orçun Oruç, 2022. "Software-Defined Mobile Supply Chains: Rebalancing Resilience and Efficiency in Production Systems," Sustainability, MDPI, vol. 14(5), pages 1-21, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:252:y:2022:i:c:s0360544222008234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.