IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics0360544222001293.html
   My bibliography  Save this article

Joint planning of distributed generations and energy storage in active distribution networks: A Bi-Level programming approach

Author

Listed:
  • Li, Yang
  • Feng, Bo
  • Wang, Bin
  • Sun, Shuchao

Abstract

In order to improve the penetration of renewable energy resources for distribution networks, a joint planning model of distributed generations (DGs) and energy storage is proposed for an active distribution network by using a bi-level programming approach in this paper. In this model, the upper-level aims to seek the optimal location and capacity of DGs and energy storage, while the lower-level optimizes the operation of energy storage devices. To solve this model, an improved binary particle swarm optimization (IBPSO) algorithm based on chaos optimization is developed, and the optimal joint planning is achieved through alternating iterations between the two levels. The simulation results on the PG & E 69-bus distribution system demonstrate that the presented approach manages to reduce the planning deviation caused by the uncertainties of DG outputs and remarkably improve the voltage profile and operational economy of distribution systems.

Suggested Citation

  • Li, Yang & Feng, Bo & Wang, Bin & Sun, Shuchao, 2022. "Joint planning of distributed generations and energy storage in active distribution networks: A Bi-Level programming approach," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001293
    DOI: 10.1016/j.energy.2022.123226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222001293
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bozorgavari, Seyed Aboozar & Aghaei, Jamshid & Pirouzi, Sasan & Nikoobakht, Ahmad & Farahmand, Hossein & Korpås, Magnus, 2020. "Robust planning of distributed battery energy storage systems in flexible smart distribution networks: A comprehensive study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    2. Huy, Phung Dang & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tan, Kang Miao & Ekanayake, Janaka B., 2020. "Optimal placement, sizing and power factor of distributed generation: A comprehensive study spanning from the planning stage to the operation stage," Energy, Elsevier, vol. 195(C).
    3. Jin, Peng & Li, Yang & Li, Guoqing & Chen, Zhe & Zhai, Xiaojuan, 2017. "Optimized hierarchical power oscillations control for distributed generation under unbalanced conditions," Applied Energy, Elsevier, vol. 194(C), pages 343-352.
    4. Wang, Shouxiang & Wang, Kai & Teng, Fei & Strbac, Goran & Wu, Lei, 2018. "An affine arithmetic-based multi-objective optimization method for energy storage systems operating in active distribution networks with uncertainties," Applied Energy, Elsevier, vol. 223(C), pages 215-228.
    5. Aman, M.M. & Jasmon, G.B. & Bakar, A.H.A. & Mokhlis, H., 2014. "A new approach for optimum simultaneous multi-DG distributed generation Units placement and sizing based on maximization of system loadability using HPSO (hybrid particle swarm optimization) algorithm," Energy, Elsevier, vol. 66(C), pages 202-215.
    6. Mokgonyana, Lesiba & Zhang, Jiangfeng & Li, Hailong & Hu, Yihua, 2017. "Optimal location and capacity planning for distributed generation with independent power production and self-generation," Applied Energy, Elsevier, vol. 188(C), pages 140-150.
    7. Kanwar, Neeraj & Gupta, Nikhil & Niazi, K.R. & Swarnkar, Anil & Bansal, R.C., 2017. "Simultaneous allocation of distributed energy resource using improved particle swarm optimization," Applied Energy, Elsevier, vol. 185(P2), pages 1684-1693.
    8. Yanjun Zhang & Tie Li & Guangyu Na & Guoqing Li & Yang Li, 2015. "Optimized Extreme Learning Machine for Power System Transient Stability Prediction Using Synchrophasors," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-8, November.
    9. Li, Yang & Li, Yahui & Li, Guoqing & Zhao, Dongbo & Chen, Chen, 2018. "Two-stage multi-objective OPF for AC/DC grids with VSC-HVDC: Incorporating decisions analysis into optimization process," Energy, Elsevier, vol. 147(C), pages 286-296.
    10. Zhao, Bo & Ren, Junzhi & Chen, Jian & Lin, Da & Qin, Ruwen, 2020. "Tri-level robust planning-operation co-optimization of distributed energy storage in distribution networks with high PV penetration," Applied Energy, Elsevier, vol. 279(C).
    11. Esmaeili, Mobin & Sedighizadeh, Mostafa & Esmaili, Masoud, 2016. "Multi-objective optimal reconfiguration and DG (Distributed Generation) power allocation in distribution networks using Big Bang-Big Crunch algorithm considering load uncertainty," Energy, Elsevier, vol. 103(C), pages 86-99.
    12. Li, Yang & Feng, Bo & Li, Guoqing & Qi, Junjian & Zhao, Dongbo & Mu, Yunfei, 2018. "Optimal distributed generation planning in active distribution networks considering integration of energy storage," Applied Energy, Elsevier, vol. 210(C), pages 1073-1081.
    13. Zhang, Shenxi & Cheng, Haozhong & Wang, Dan & Zhang, Libo & Li, Furong & Yao, Liangzhong, 2018. "Distributed generation planning in active distribution network considering demand side management and network reconfiguration," Applied Energy, Elsevier, vol. 228(C), pages 1921-1936.
    14. Esmaili, Masoud & Firozjaee, Esmail Chaktan & Shayanfar, Heidar Ali, 2014. "Optimal placement of distributed generations considering voltage stability and power losses with observing voltage-related constraints," Applied Energy, Elsevier, vol. 113(C), pages 1252-1260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lv, Chaoxian & Liang, Rui & Zhang, Ge & Zhang, Xiaotong & Jin, Wei, 2023. "Energy accommodation-oriented interaction of active distribution network and central energy station considering soft open points," Energy, Elsevier, vol. 268(C).
    2. Wang, Jiangjiang & Deng, Hongda & Qi, Xiaoling, 2022. "Cost-based site and capacity optimization of multi-energy storage system in the regional integrated energy networks," Energy, Elsevier, vol. 261(PA).
    3. Jiankai Gao & Yang Li & Bin Wang & Haibo Wu, 2023. "Multi-Microgrid Collaborative Optimization Scheduling Using an Improved Multi-Agent Soft Actor-Critic Algorithm," Energies, MDPI, vol. 16(7), pages 1-21, April.
    4. Zhou, Siyu & Han, Yang & Yang, Ping & Mahmoud, Karar & Lehtonen, Matti & Darwish, Mohamed M.F. & Zalhaf, Amr S., 2022. "An optimal network constraint-based joint expansion planning model for modern distribution networks with multi-types intermittent RERs," Renewable Energy, Elsevier, vol. 194(C), pages 137-151.
    5. Zhou, Siyu & Han, Yang & Chen, Shuheng & Yang, Ping & Mahmoud, Karar & Darwish, Mohamed M.F. & Matti, Lehtonen & Zalhaf, Amr S., 2023. "A multiple uncertainty-based Bi-level expansion planning paradigm for distribution networks complying with energy storage system functionalities," Energy, Elsevier, vol. 275(C).
    6. Wang, Bangyan & Wang, Xiuli & Zhu, Zongyao & Wu, Xiong, 2023. "Siting and sizing of energy storage for renewable generation utilization with multi-stage dispatch under uncertainty: A tri-level model and decomposition approach," Applied Energy, Elsevier, vol. 344(C).
    7. Gang Liang & Bing Sun & Yuan Zeng & Leijiao Ge & Yunfei Li & Yu Wang, 2022. "An Optimal Allocation Method of Distributed PV and Energy Storage Considering Moderate Curtailment Measure," Energies, MDPI, vol. 15(20), pages 1-19, October.
    8. Umme Mumtahina & Sanath Alahakoon & Peter Wolfs, 2023. "A Literature Review on the Optimal Placement of Static Synchronous Compensator (STATCOM) in Distribution Networks," Energies, MDPI, vol. 16(17), pages 1-38, August.
    9. Li, Yang & Bu, Fanjin & Li, Yuanzheng & Long, Chao, 2023. "Optimal scheduling of island integrated energy systems considering multi-uncertainties and hydrothermal simultaneous transmission: A deep reinforcement learning approach," Applied Energy, Elsevier, vol. 333(C).
    10. Li, Yang & Wang, Ruinong & Li, Yuanzheng & Zhang, Meng & Long, Chao, 2023. "Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach," Applied Energy, Elsevier, vol. 329(C).
    11. Li, Yang & Han, Meng & Shahidehpour, Mohammad & Li, Jiazheng & Long, Chao, 2023. "Data-driven distributionally robust scheduling of community integrated energy systems with uncertain renewable generations considering integrated demand response," Applied Energy, Elsevier, vol. 335(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yang & Yang, Zhen & Li, Guoqing & Mu, Yunfei & Zhao, Dongbo & Chen, Chen & Shen, Bo, 2018. "Optimal scheduling of isolated microgrid with an electric vehicle battery swapping station in multi-stakeholder scenarios: A bi-level programming approach via real-time pricing," Applied Energy, Elsevier, vol. 232(C), pages 54-68.
    2. Li, Yang & Wang, Jinlong & Zhao, Dongbo & Li, Guoqing & Chen, Chen, 2018. "A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making," Energy, Elsevier, vol. 162(C), pages 237-254.
    3. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    4. Bayat, A. & Bagheri, A., 2019. "Optimal active and reactive power allocation in distribution networks using a novel heuristic approach," Applied Energy, Elsevier, vol. 233, pages 71-85.
    5. Ben Hamida, Imen & Salah, Saoussen Brini & Msahli, Faouzi & Mimouni, Mohamed Faouzi, 2018. "Optimal network reconfiguration and renewable DG integration considering time sequence variation in load and DGs," Renewable Energy, Elsevier, vol. 121(C), pages 66-80.
    6. Zeeshan Memon Anjum & Dalila Mat Said & Mohammad Yusri Hassan & Zohaib Hussain Leghari & Gul Sahar, 2022. "Parallel operated hybrid Arithmetic-Salp swarm optimizer for optimal allocation of multiple distributed generation units in distribution networks," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-38, April.
    7. Mohammadhafez Bazrafshan & Likhitha Yalamanchili & Nikolaos Gatsis & Juan Gomez, 2019. "Stochastic Planning of Distributed PV Generation," Energies, MDPI, vol. 12(3), pages 1-20, January.
    8. Henan Dong & Shun Yuan & Zijiao Han & Zhiyuan Cai & Guangdong Jia & Yangyang Ge, 2018. "A Comprehensive Strategy for Accurate Reactive Power Distribution, Stability Improvement, and Harmonic Suppression of Multi-Inverter-Based Micro-Grid," Energies, MDPI, vol. 11(4), pages 1-16, March.
    9. Ehsan, Ali & Yang, Qiang, 2019. "State-of-the-art techniques for modelling of uncertainties in active distribution network planning: A review," Applied Energy, Elsevier, vol. 239(C), pages 1509-1523.
    10. Zhang, Jingrui & Zhou, Yulu & Li, Zhuoyun & Cai, Junfeng, 2021. "Three-level day-ahead optimal scheduling framework considering multi-stakeholders in active distribution networks: Up-to-down approach," Energy, Elsevier, vol. 219(C).
    11. Li, Yang & Feng, Bo & Li, Guoqing & Qi, Junjian & Zhao, Dongbo & Mu, Yunfei, 2018. "Optimal distributed generation planning in active distribution networks considering integration of energy storage," Applied Energy, Elsevier, vol. 210(C), pages 1073-1081.
    12. Jiao, P.H. & Chen, J.J. & Cai, X. & Wang, L.L. & Zhao, Y.L. & Zhang, X.H. & Chen, W.G., 2021. "Joint active and reactive for allocation of renewable energy and energy storage under uncertain coupling," Applied Energy, Elsevier, vol. 302(C).
    13. Li, Yinxiao & Wang, Yi & Chen, Qixin, 2020. "Study on the impacts of meteorological factors on distributed photovoltaic accommodation considering dynamic line parameters," Applied Energy, Elsevier, vol. 259(C).
    14. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    15. Ma, Zherui & Dong, Fuxiang & Wang, Jiangjiang & Zhou, Yuan & Feng, Yingsong, 2023. "Optimal design of a novel hybrid renewable energy CCHP system considering long and short-term benefits," Renewable Energy, Elsevier, vol. 206(C), pages 72-85.
    16. Veerasamy, Veerapandiyan & Abdul Wahab, Noor Izzri & Ramachandran, Rajeswari & Othman, Mohammad Lutfi & Hizam, Hashim & Devendran, Vidhya Sagar & Irudayaraj, Andrew Xavier Raj & Vinayagam, Arangarajan, 2021. "Recurrent network based power flow solution for voltage stability assessment and improvement with distributed energy sources," Applied Energy, Elsevier, vol. 302(C).
    17. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    18. Luo, Lizi & Gu, Wei & Zhang, Xiao-Ping & Cao, Ge & Wang, Weijun & Zhu, Gang & You, Dingjun & Wu, Zhi, 2018. "Optimal siting and sizing of distributed generation in distribution systems with PV solar farm utilized as STATCOM (PV-STATCOM)," Applied Energy, Elsevier, vol. 210(C), pages 1092-1100.
    19. Henrique Pires Corrêa & Rafael Ribeiro de Carvalho Vaz & Flávio Henrique Teles Vieira & Sérgio Granato de Araújo, 2019. "Reliability Based Genetic Algorithm Applied to Allocation of Fiber Optics Links for Power Grid Automation," Energies, MDPI, vol. 12(11), pages 1-26, May.
    20. Vikas Singh Bhadoria & Nidhi Singh Pal & Vivek Shrivastava, 2019. "Artificial immune system based approach for size and location optimization of distributed generation in distribution system," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 339-349, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s0360544222001293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.