IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipds0360544221026323.html
   My bibliography  Save this article

Product characteristics and potential energy recovery for microwave assisted pyrolysis of waste printed circuit boards in a continuously operated auger pyrolyser

Author

Listed:
  • Zhang, Yingwen
  • Zhou, Chunbao
  • Liu, Yang
  • Zhang, Tianhao
  • Li, Xiangtong
  • Wang, Long
  • Dai, Jianjun
  • Qu, Junshen
  • Zhang, Changfa
  • Yu, Mengyan
  • Yuan, Yanxin
  • Jin, Yajie
  • Yu, Hejie
  • Fu, Jie

Abstract

The efficient disposal and recycling of nonmetal materials from waste printed circuit boards (WPCBs) can be a significant challenge due to their toxicity and complexity. In this paper, the characteristics and energy recovery of products from WPCBs pyrolysis at different temperatures were investigated using a two-mode auger pyrolyzer operated continuously under microwave irradiation. The results indicated that the organic matter in WPCBs was almost completely recovered (88.03%) and the maximum condensate yield (22.66 wt%) was obtained at 550 °C, with lower brominated compounds (1.83%) and higher phenols recovery (80.4%). Pyrolysis oil with low moisture content (0.5–2%) could be directly separated in-situ from condensates. Pyrolysis residue (PR) was further separated into valuable glass fiber and powder char with a certain degree graphitization by ball-milling. Bromine and sulfur mostly remained in powder char. The highest yields of CO (11.61 wt%) and H2 (1.50 wt%) were obtained at 750 °C. Energy balance analysis showed that 90.25% of energy was recovered at 550 °C, providing an energy efficiency as high as 72.00%. Bromine mainly remained in PR in the form of inorganic bromine (44.35–56.00 wt%), and was transferred to gas phases (HBr and CH3Br) with temperature increasing.

Suggested Citation

  • Zhang, Yingwen & Zhou, Chunbao & Liu, Yang & Zhang, Tianhao & Li, Xiangtong & Wang, Long & Dai, Jianjun & Qu, Junshen & Zhang, Changfa & Yu, Mengyan & Yuan, Yanxin & Jin, Yajie & Yu, Hejie & Fu, Jie, 2022. "Product characteristics and potential energy recovery for microwave assisted pyrolysis of waste printed circuit boards in a continuously operated auger pyrolyser," Energy, Elsevier, vol. 239(PD).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221026323
    DOI: 10.1016/j.energy.2021.122383
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221026323
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Evangelopoulos, Panagiotis & Kantarelis, Efthymios & Yang, Weihong, 2017. "Experimental investigation of the influence of reaction atmosphere on the pyrolysis of printed circuit boards," Applied Energy, Elsevier, vol. 204(C), pages 1065-1073.
    2. Motasemi, F. & Afzal, Muhammad T., 2013. "A review on the microwave-assisted pyrolysis technique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 317-330.
    3. Jing Sun & Wenlong Wang & Zhen Liu & Qingluan Ma & Chao Zhao & Chunyuan Ma, 2012. "Kinetic Study of the Pyrolysis of Waste Printed Circuit Boards Subject to Conventional and Microwave Heating," Energies, MDPI, vol. 5(9), pages 1-12, August.
    4. Sharma, Abhishek & Murugan, S., 2017. "Effect of nozzle opening pressure on the behaviour of a diesel engine running with non-petroleum fuel," Energy, Elsevier, vol. 127(C), pages 236-246.
    5. Liu, Yang & Ran, Chunmei & Siddiqui, Azka R. & Siyal, Asif Ali & Song, Yongmeng & Dai, Jianjun & Chtaeva, Polina & Fu, Jie & Ao, Wenya & Deng, Zeyu & Jiang, Zhihui & Zhang, Tianhao, 2020. "Characterization and analysis of sludge char prepared from bench-scale fluidized bed pyrolysis of sewage sludge," Energy, Elsevier, vol. 200(C).
    6. Liu, Yang & Ran, Chunmei & Siddiqui, Azka Rizwana & Chtaeva, Polina & Siyal, Asif Ali & Song, Yongmeng & Dai, Jianjun & Deng, Zeyu & Fu, Jie & Ao, Wenya & Jiang, Zhihui & Zhang, Tianhao, 2020. "Pyrolysis of sewage sludge in a benchtop fluidized bed reactor: Characteristics of condensates and non-condensable gases," Renewable Energy, Elsevier, vol. 160(C), pages 707-720.
    7. Liu, Yang & Ran, Chunmei & Siddiqui, Azka R. & Mao, Xiao & Kang, Qinhao & Fu, Jie & Deng, Zeyu & Song, Yongmeng & Jiang, Zhihui & Zhang, Tianhao & Ao, Wenya & Dai, Jianjun, 2018. "Pyrolysis of textile dyeing sludge in fluidized bed: Characterization and analysis of pyrolysis products," Energy, Elsevier, vol. 165(PA), pages 720-730.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Chunbao & Zhang, Yingwen & Liu, Yang & Deng, Zeyu & Li, Xiangtong & Wang, Long & Dai, Jianjun & Song, Yongmeng & Jiang, Zhihui & Qu, Junshen & Siyal, Asif Ali, 2021. "Co-pyrolysis of textile dyeing sludge and red wood waste in a continuously operated auger reactor under microwave irradiation," Energy, Elsevier, vol. 218(C).
    2. José Juan Alvarado Flores & José Guadalupe Rutiaga Quiñones & María Liliana Ávalos Rodríguez & Jorge Víctor Alcaraz Vera & Jaime Espino Valencia & Santiago José Guevara Martínez & Francisco Márquez Mo, 2020. "Thermal Degradation Kinetics and FT-IR Analysis on the Pyrolysis of Pinus pseudostrobus , Pinus leiophylla and Pinus montezumae as Forest Waste in Western Mexico," Energies, MDPI, vol. 13(4), pages 1-25, February.
    3. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    4. Lei Han & Jinling Li & Chengtun Qu & Zhiguo Shao & Tao Yu & Bo Yang, 2022. "Recent Progress in Sludge Co-Pyrolysis Technology," Sustainability, MDPI, vol. 14(13), pages 1-12, June.
    5. Li, Longzhi & Tan, Yongdong & Sun, Jifu & Zhang, Yue & Zhang, Lianjie & Deng, Yue & Cai, Dongqiang & Song, Zhanlong & Zou, Guifu & Bai, Yonghui, 2021. "Characteristics and kinetic analysis of pyrolysis of forestry waste promoted by microwave-metal interaction," Energy, Elsevier, vol. 232(C).
    6. Junshen Qu & Daiying Wang & Zeyu Deng & Hejie Yu & Jianjun Dai & Xiaotao Bi, 2023. "Biochar Prepared by Microwave-Assisted Co-Pyrolysis of Sewage Sludge and Cotton Stalk: A Potential Soil Conditioner," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    7. Ge, Shengbo & Yek, Peter Nai Yuh & Cheng, Yoke Wang & Xia, Changlei & Wan Mahari, Wan Adibah & Liew, Rock Keey & Peng, Wanxi & Yuan, Tong-Qi & Tabatabaei, Meisam & Aghbashlo, Mortaza & Sonne, Christia, 2021. "Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Song, Zhanlong & Yang, Yaqing & Sun, Jing & Zhao, Xiqiang & Wang, Wenlong & Mao, Yanpeng & Ma, Chunyuan, 2017. "Effect of power level on the microwave pyrolysis of tire powder," Energy, Elsevier, vol. 127(C), pages 571-580.
    9. Lin, Junhao & Sun, Shichang & Cui, Chongwei & Ma, Rui & Fang, Lin & Zhang, Peixin & Quan, Zonggang & Song, Xin & Yan, Jianglong & Luo, Juan, 2019. "Hydrogen-rich bio-gas generation and optimization in relation to heavy metals immobilization during Pd-catalyzed supercritical water gasification of sludge," Energy, Elsevier, vol. 189(C).
    10. Muhssen, Hassan Sadah & Masuri, Siti Ujila & Sahari, Barkawi Bin & Hairuddin, Abdul Aziz, 2021. "Design improvement of compressed natural gas (CNG)-Air mixer for diesel dual-fuel engines using computational fluid dynamics," Energy, Elsevier, vol. 216(C).
    11. Siddique, Istiaq Jamil & Salema, Arshad Adam, 2023. "Unraveling the metallic thermocouple effects during microwave heating of biomass," Energy, Elsevier, vol. 267(C).
    12. Chen, Guanyi & Li, Jian & Cheng, Zhanjun & Yan, Beibei & Ma, Wenchao & Yao, Jingang, 2018. "Investigation on model compound of biomass gasification tar cracking in microwave furnace: Comparative research," Applied Energy, Elsevier, vol. 217(C), pages 249-257.
    13. Ren, Xueyong & Shanb Ghazani, Mohammad & Zhu, Hui & Ao, Wenya & Zhang, Han & Moreside, Emma & Zhu, Jinjiao & Yang, Pu & Zhong, Na & Bi, Xiaotao, 2022. "Challenges and opportunities in microwave-assisted catalytic pyrolysis of biomass: A review," Applied Energy, Elsevier, vol. 315(C).
    14. María Teresa Martín & Juan Luis Aguirre & Juan Baena-González & Sergio González & Roberto Pérez-Aparicio & Leticia Saiz-Rodríguez, 2022. "Influence of Specific Power on the Solid and Liquid Products Obtained in the Microwave-Assisted Pyrolysis of End-of-Life Tires," Energies, MDPI, vol. 15(6), pages 1-17, March.
    15. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Zhou, Yuli & Wang, Wenlong & Sun, Jing & Fu, Lunjing & Song, Zhanlong & Zhao, Xiqiang & Mao, Yanpeng, 2017. "Microwave-induced electrical discharge of metal strips for the degradation of biomass tar," Energy, Elsevier, vol. 126(C), pages 42-52.
    17. Ocreto, Jherwin B. & Chen, Wei-Hsin & Ubando, Aristotle T. & Park, Young-Kwon & Sharma, Amit Kumar & Ashokkumar, Veeramuthu & Ok, Yong Sik & Kwon, Eilhann E. & Rollon, Analiza P. & De Luna, Mark Danie, 2021. "A critical review on second- and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    18. Siddique, Istiaq Jamil & Salema, Arshad Adam & Antunes, Elsa & Vinu, Ravikrishnan, 2022. "Technical challenges in scaling up the microwave technology for biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    19. Zhang, Yunhua & Lou, Diming & Tan, Piqiang & Hu, Zhiyuan, 2018. "Experimental study on the durability of biodiesel-powered engine equipped with a diesel oxidation catalyst and a selective catalytic reduction system," Energy, Elsevier, vol. 159(C), pages 1024-1034.
    20. Anna Matuszewska & Marlena Owczuk & Krzysztof Biernat, 2022. "Current Trends in Waste Plastics’ Liquefaction into Fuel Fraction: A Review," Energies, MDPI, vol. 15(8), pages 1-32, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221026323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.