IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipbs0360544221022696.html
   My bibliography  Save this article

Effects of rice straw ratio on mesophilic and thermophilic anaerobic co-digestion of swine manure and rice straw mixture

Author

Listed:
  • Xiao, Benyi
  • Tang, Xinyi
  • Zhang, Wenzhe
  • Zhang, Ke
  • Yang, Tang
  • Han, Yunping
  • Liu, Junxin

Abstract

The mesophilic and thermophilic anaerobic co-digestion (Co-AD) of swine manure (SM) and rice straw (RS) mixtures was evaluated in lab-scale continuously stirred tank reactors through long-term semi-continuous experiments to investigate the effects of three RS ratios (25%, 33.3%, and 50%, based on total solids). The experimental results showed that an increase in the RS ratio reduced the biogas and methane production, and methane content in both Co-ADs and the effects of the increased RS ratio on the mesophilic Co-AD (Co-MAD) were slightly lower than those on the thermophilic Co-AD (Co-TAD). The digestate characteristics were also affected by the RS ratio. A reduction analysis demonstrated the higher importance of the RS ratio in the substrate with respect to gas production in Co-MAD compared to Co-TAD. The increase in the RS ratio increased the relative abundance of Clostridium_sensu_strricto_1, and changed the predominant archaea and methanogenesis pathways in both Co-ADs.

Suggested Citation

  • Xiao, Benyi & Tang, Xinyi & Zhang, Wenzhe & Zhang, Ke & Yang, Tang & Han, Yunping & Liu, Junxin, 2022. "Effects of rice straw ratio on mesophilic and thermophilic anaerobic co-digestion of swine manure and rice straw mixture," Energy, Elsevier, vol. 239(PB).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221022696
    DOI: 10.1016/j.energy.2021.122021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221022696
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    2. Yang, Ziyi & Wang, Wen & He, Yanfeng & Zhang, Ruihong & Liu, Guangqing, 2018. "Effect of ammonia on methane production, methanogenesis pathway, microbial community and reactor performance under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 125(C), pages 915-925.
    3. Panigrahi, Sagarika & Dubey, Brajesh K., 2019. "A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste," Renewable Energy, Elsevier, vol. 143(C), pages 779-797.
    4. Lim, Jun Wei & Kelvin Wong, Sheng Wen & Dai, Yanjun & Tong, Yen Wah, 2020. "Effect of seed sludge source and start-up strategy on the performance and microbial communities of thermophilic anaerobic digestion of food waste," Energy, Elsevier, vol. 203(C).
    5. Nges, Ivo Achu & Liu, Jing, 2010. "Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 35(10), pages 2200-2206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Lulin & Lu, Lidi & Shen, Xuelian & Chen, Jinhua & Pan, Yang & Wang, Yuchen & Luo, Qing, 2023. "Energy, exergy and economic analysis of an integrated ground source heat pump and anaerobic digestion system for Co-generation of heating, cooling and biogas," Energy, Elsevier, vol. 282(C).
    2. Youfei Zhou & Weijie Hu & Jun Sheng & Cheng Peng & Tianfeng Wang, 2023. "Comparison of Anaerobic Co-Digestion of Buffalo Manure and Excess Sludge with Different Mixing Ratios under Thermophilic and Mesophilic Conditions," Sustainability, MDPI, vol. 15(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Wei & Chen, Guang & Wang, Zhiwei, 2022. "Enhanced sludge digestion using anaerobic dynamic membrane bioreactor: Effects of hydraulic retention time," Energy, Elsevier, vol. 261(PB).
    2. Qin, Yujie & Chen, Linyi & Wang, Tongyu & Ren, Junyi & Cao, Yan & Zhou, Shaoqi, 2019. "Impacts of ferric chloride, ferrous chloride and solid retention time on the methane-producing and physicochemical characterization in high-solids sludge anaerobic digestion," Renewable Energy, Elsevier, vol. 139(C), pages 1290-1298.
    3. Wu, Di & Li, Lei & Peng, Yun & Yang, Pingjin & Peng, Xuya & Sun, Yongming & Wang, Xiaoming, 2021. "State indicators of anaerobic digestion: A critical review on process monitoring and diagnosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    4. Dalke, Rachel & Demro, Delaney & Khalid, Yusra & Wu, Haoran & Urgun-Demirtas, Meltem, 2021. "Current status of anaerobic digestion of food waste in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Palma-Heredia, D. & Verdaguer, M. & Molinos-Senante, M. & Poch, M. & Cugueró-Escofet, M.À., 2021. "Optimised blending for anaerobic co-digestion using ant colony approach: Besòs river basin case study," Renewable Energy, Elsevier, vol. 168(C), pages 141-150.
    6. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. de Castro, Thiago Morais & Arantes, Eudes José & de Mendonça Costa, Mônica Sarolli Silva & Gotardo, Jackeline Tatiane & Passig, Fernando Hermes & de Carvalho, Karina Querne & Gomes, Simone Damasceno, 2021. "Anaerobic co-digestion of industrial waste landfill leachate and glycerin in a continuous anaerobic bioreactor with a fixed-structured bed (ABFSB): Effects of volumetric organic loading rate and alkal," Renewable Energy, Elsevier, vol. 164(C), pages 1436-1446.
    8. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    9. Lourenço, Vitor Alves & Nadaleti, Willian Cézar & Vieira, Bruno Müller & Chua, Hui, 2021. "Methane production test of the anaerobic sludge from rice parboiling industries with the addition of biodiesel glycerol from rice bran oil in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    10. Zhang, Le & Loh, Kai-Chee & Lim, Jun Wei & Zhang, Jingxin, 2019. "Bioinformatics analysis of metagenomics data of biogas-producing microbial communities in anaerobic digesters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 110-126.
    11. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.
    12. Tonanzi, B. & Gallipoli, A. & Gianico, A. & Montecchio, D. & Pagliaccia, P. & Rossetti, S. & Braguglia, C.M., 2021. "Elucidating the key factors in semicontinuous anaerobic digestion of urban biowaste: The crucial role of sludge addition in process stability, microbial community enrichment and methane production," Renewable Energy, Elsevier, vol. 179(C), pages 272-284.
    13. Yue Zhang & Sigrid Kusch-Brandt & Shiyan Gu & Sonia Heaven, 2019. "Particle Size Distribution in Municipal Solid Waste Pre-Treated for Bioprocessing," Resources, MDPI, vol. 8(4), pages 1-24, October.
    14. Siswo Sumardiono & Gebyar Adisukmo & Muthia Hanif & Budiyono Budiyono & Heri Cahyono, 2021. "Effects of Pretreatment and Ratio of Solid Sago Waste to Rumen on Biogas Production through Solid-State Anaerobic Digestion," Sustainability, MDPI, vol. 13(13), pages 1-11, July.
    15. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    16. Luo, Jingyang & Feng, Leiyu & Zhang, Wei & Li, Xiang & Chen, Hong & Wang, Dongbo & Chen, Yinguang, 2014. "Improved production of short-chain fatty acids from waste activated sludge driven by carbohydrate addition in continuous-flow reactors: Influence of SRT and temperature," Applied Energy, Elsevier, vol. 113(C), pages 51-58.
    17. Reinauer, Tobias & Hansen, Ulrich Elmer, 2021. "Determinants of adoption in open-source hardware: A review of small wind turbines," Technovation, Elsevier, vol. 106(C).
    18. Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
    19. Krzysztof Pilarski & Agnieszka A. Pilarska & Piotr Boniecki & Gniewko Niedbała & Karol Durczak & Kamil Witaszek & Natalia Mioduszewska & Ireneusz Kowalik, 2020. "The Efficiency of Industrial and Laboratory Anaerobic Digesters of Organic Substrates: The Use of the Biochemical Methane Potential Correction Coefficient," Energies, MDPI, vol. 13(5), pages 1-13, March.
    20. Di Maria, Francesco & Micale, Caterina & Contini, Stefano, 2016. "Energetic and environmental sustainability of the co-digestion of sludge with bio-waste in a life cycle perspective," Applied Energy, Elsevier, vol. 171(C), pages 67-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pb:s0360544221022696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.