IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipbs0360544221021095.html
   My bibliography  Save this article

Performance evaluation and environment risk assessment of steel slag enhancement for seawater to capture CO2

Author

Listed:
  • Li, Hongwei
  • Zhang, Rongjun
  • Wang, Tianye
  • Wu, Yu
  • Xu, Run
  • Wang, Qiang
  • Tang, Zhigang

Abstract

Major CO2 emitters are concentrated in coastal areas of China. The seawater with potential to capture CO2 was used as an absorbent and the addition of steel slag (SS) enhanced CO2 absorption by seawater. CO2 solubility in steel-slag-enhanced seawater was measured by an on-line chromatography apparatus, and the characterization analysis, thermodynamics, and kinetics were researched. CO2 solubility in seawater with a steel slag of 1.00 wt% increases by 64.27% relative to that in seawater, but is smaller than that in simulated-steel-slag-seawater (increasing by 29.86% relative to that in seawater with real steel slag). The results of XRD, TGA, IR and SEM-EDS show that Ca(OH)2 in the steel slag reacts with CO2 to form CaCO3. More quantity of CaO in simulated steel slag reacted with CO2 compared to real steel slag from XRF analysis. Increasing the concentration of steel slag and decreasing particle size of steel slag can also improve CO2 solubility and CO2 absorption rate. The steel slag and products after capturing CO2 are not hazardous waste and the steel slag can operate the solidification/stabilization of toxic metals. Steel slag can enhance CO2 absorption by seawater and perennially segregate CO2, providing CO2 capture and storage for coastal zones.

Suggested Citation

  • Li, Hongwei & Zhang, Rongjun & Wang, Tianye & Wu, Yu & Xu, Run & Wang, Qiang & Tang, Zhigang, 2022. "Performance evaluation and environment risk assessment of steel slag enhancement for seawater to capture CO2," Energy, Elsevier, vol. 238(PB).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221021095
    DOI: 10.1016/j.energy.2021.121861
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221021095
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121861?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Sung Ho & Lee, Seung Jong & Lee, Jin Wook & Chun, Sung Nam & Lee, Jung Bin, 2015. "The quantitative evaluation of two-stage pre-combustion CO2 capture processes using the physical solvents with various design parameters," Energy, Elsevier, vol. 81(C), pages 47-55.
    2. Xiong, Xiaojun & Lin, Wensheng & Gu, Anzhong, 2015. "Integration of CO2 cryogenic removal with a natural gas pressurized liquefaction process using gas expansion refrigeration," Energy, Elsevier, vol. 93(P1), pages 1-9.
    3. Han, Sang-Jun & Im, Hye Jin & Wee, Jung-Ho, 2015. "Leaching and indirect mineral carbonation performance of coal fly ash-water solution system," Applied Energy, Elsevier, vol. 142(C), pages 274-282.
    4. Urech, Jeremy & Tock, Laurence & Harkin, Trent & Hoadley, Andrew & Maréchal, François, 2014. "An assessment of different solvent-based capture technologies within an IGCC–CCS power plant," Energy, Elsevier, vol. 64(C), pages 268-276.
    5. Li, Hongwei & Tang, Zhigang & He, Zhimin & Cui, Jingjie & Guo, Dong & Zhao, Zhijun & Mao, Xian-zhong, 2017. "Performance evaluation of CO2 capture with diethyl succinate," Applied Energy, Elsevier, vol. 200(C), pages 119-131.
    6. Chen, Wei-Hsin & Chen, Shu-Mi & Hung, Chen-I, 2013. "Carbon dioxide capture by single droplet using Selexol, Rectisol and water as absorbents: A theoretical approach," Applied Energy, Elsevier, vol. 111(C), pages 731-741.
    7. He, Yong & Fu, Feifei & Liao, Nuo, 2021. "Exploring the path of carbon emissions reduction in China’s industrial sector through energy efficiency enhancement induced by R&D investment," Energy, Elsevier, vol. 225(C).
    8. Yuanying Chi & Zerun Liu & Xu Wang & Yangyi Zhang & Fang Wei, 2021. "Provincial CO 2 Emission Measurement and Analysis of the Construction Industry under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    9. Dri, Marco & Sanna, Aimaro & Maroto-Valer, M. Mercedes, 2014. "Mineral carbonation from metal wastes: Effect of solid to liquid ratio on the efficiency and characterization of carbonated products," Applied Energy, Elsevier, vol. 113(C), pages 515-523.
    10. Li, Hongwei & Tang, Zhigang & Xing, Xiao & Guo, Dong & Cui, Longpeng & Mao, Xian-zhong, 2018. "Study of CO2 capture by seawater and its reinforcement," Energy, Elsevier, vol. 164(C), pages 1135-1144.
    11. Eloneva, Sanni & Said, Arshe & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2012. "Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate," Applied Energy, Elsevier, vol. 90(1), pages 329-334.
    12. Li, Hongwei & Tang, Zhigang & Li, Na & Cui, Longpeng & Mao, Xian-zhong, 2020. "Mechanism and process study on steel slag enhancement for CO2 capture by seawater," Applied Energy, Elsevier, vol. 276(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nejati, Kaveh & Aghel, Babak, 2023. "Utilizing fly ash from a power plant company for CO2 capture in a microchannel," Energy, Elsevier, vol. 278(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hongwei & Tang, Zhigang & Li, Na & Cui, Longpeng & Mao, Xian-zhong, 2020. "Mechanism and process study on steel slag enhancement for CO2 capture by seawater," Applied Energy, Elsevier, vol. 276(C).
    2. Li, Hongwei & Tang, Zhigang & Xing, Xiao & Guo, Dong & Cui, Longpeng & Mao, Xian-zhong, 2018. "Study of CO2 capture by seawater and its reinforcement," Energy, Elsevier, vol. 164(C), pages 1135-1144.
    3. Hosseini, Tahereh & Haque, Nawshad & Selomulya, Cordelia & Zhang, Lian, 2016. "Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – Process simulation and techno-economic analysis," Applied Energy, Elsevier, vol. 175(C), pages 54-68.
    4. Pan, Shu-Yuan & Lorente Lafuente, Ana Maria & Chiang, Pen-Chi, 2016. "Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization," Applied Energy, Elsevier, vol. 170(C), pages 269-277.
    5. Li, Hongwei & Tang, Zhigang & He, Zhimin & Gui, Xia & Cui, Longpeng & Mao, Xian-zhong, 2020. "Structure-activity relationship for CO2 absorbent," Energy, Elsevier, vol. 197(C).
    6. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Ren, Shan & Aldahri, Tahani & Liu, Weizao & Liang, Bin, 2021. "CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments," Energy, Elsevier, vol. 214(C).
    8. Lee, Woo-Sung & Lee, Jae-Cheol & Oh, Hyun-Taek & Baek, Seung-Won & Oh, Min & Lee, Chang-Ha, 2017. "Performance, economic and exergy analyses of carbon capture processes for a 300 MW class integrated gasification combined cycle power plant," Energy, Elsevier, vol. 134(C), pages 731-742.
    9. Naraharisetti, Pavan Kumar & Yeo, Tze Yuen & Bu, Jie, 2019. "New classification of CO2 mineralization processes and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 220-233.
    10. Yang, Sheng & Zhang, Lu & Song, Dongran, 2022. "Conceptual design, optimization and thermodynamic analysis of a CO2 capture process based on Rectisol," Energy, Elsevier, vol. 244(PA).
    11. Chen, Yaping & Zhu, Zilong & Wu, Jiafeng & Yang, Shifan & Zhang, Baohuai, 2017. "A novel LNG/O2 combustion gas and steam mixture cycle with energy storage and CO2 capture," Energy, Elsevier, vol. 120(C), pages 128-137.
    12. Ashrafi, Omid & Bashiri, Hamed & Esmaeili, Amin & Sapoundjiev, Hristo & Navarri, Philippe, 2018. "Ejector integration for the cost effective design of the Selexol™ process," Energy, Elsevier, vol. 162(C), pages 380-392.
    13. Zhu, Zilong & Chen, Yaping & Wu, Jiafeng & Zhang, Shaobo & Zheng, Shuxing, 2019. "A modified Allam cycle without compressors realizing efficient power generation with peak load shifting and CO2 capture," Energy, Elsevier, vol. 174(C), pages 478-487.
    14. Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
    15. Nejati, Kaveh & Aghel, Babak, 2023. "Utilizing fly ash from a power plant company for CO2 capture in a microchannel," Energy, Elsevier, vol. 278(PB).
    16. Shawhan, Daniel L. & Picciano, Paul D., 2019. "Costs and benefits of saving unprofitable generators: A simulation case study for US coal and nuclear power plants," Energy Policy, Elsevier, vol. 124(C), pages 383-400.
    17. Moioli, Stefania & Giuffrida, Antonio & Romano, Matteo C. & Pellegrini, Laura A. & Lozza, Giovanni, 2016. "Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants," Applied Energy, Elsevier, vol. 183(C), pages 1452-1470.
    18. Dongdong Fang & Lihui Zhang & Linjiang Zou & Feng Duan, 2021. "Effect of leaching parameters on the composition of adsorbents derived from steel slag and their CO2 capture characteristics," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(5), pages 924-938, October.
    19. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    20. Abudureheman, Maliyamu & Jiang, Qingzhe & Dong, Xiucheng & Dong, Cong, 2022. "Spatial effects of dynamic comprehensive energy efficiency on CO2 reduction in China," Energy Policy, Elsevier, vol. 166(C).

    More about this item

    Keywords

    CO2 capture; Steel slag; Seawater; Thermodynamics; Kinetics;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pb:s0360544221021095. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.