IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v142y2015icp274-282.html
   My bibliography  Save this article

Leaching and indirect mineral carbonation performance of coal fly ash-water solution system

Author

Listed:
  • Han, Sang-Jun
  • Im, Hye Jin
  • Wee, Jung-Ho

Abstract

The leaching and carbonation performances of indirect mineral carbonation are investigated using coal fly ash (FA) as the raw source and water as the solvent. The reactions were conducted at ambient temperature and pressure with a gas mixture comprised of 15 and 33mol% CO2. The overall CO2 storage and mineral carbonation capacities of FA suspended solution in which alkaline components had been previously leached for 2h (2S33) were 31.06 and 17.36mg CO2/g FA, respectively. The mineral carbonation capacity of FA in 2S33 was 18% of the theoretical value and its mineral carbonation storage capacity ratio was 55.9%. The performance of 2S33 was higher than that of its filtrate because the alkaline components were leached from the suspended FA simultaneously with the mineral carbonation. Submicrometer-sized particles were present in raw FA and their size was reduced by stirring during the leaching, as well as slightly increased, compared to the original raw FA, due to the carbonation. These submicro FA particles strongly affected the performance of the mineral carbonation of the FA-water solution.

Suggested Citation

  • Han, Sang-Jun & Im, Hye Jin & Wee, Jung-Ho, 2015. "Leaching and indirect mineral carbonation performance of coal fly ash-water solution system," Applied Energy, Elsevier, vol. 142(C), pages 274-282.
  • Handle: RePEc:eee:appene:v:142:y:2015:i:c:p:274-282
    DOI: 10.1016/j.apenergy.2014.12.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914013312
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.12.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wee, Jung-Ho, 2013. "A review on carbon dioxide capture and storage technology using coal fly ash," Applied Energy, Elsevier, vol. 106(C), pages 143-151.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janusz Zdeb & Natalia Howaniec, 2022. "Energy Sector Derived Combustion Products Utilization—Current Advances in Carbon Dioxide Mineralization," Energies, MDPI, vol. 15(23), pages 1-28, November.
    2. Zdeb, Janusz & Howaniec, Natalia & Smoliński, Adam, 2023. "Experimental study on combined valorization of bituminous coal derived fluidized bed fly ash and carbon dioxide from energy sector," Energy, Elsevier, vol. 265(C).
    3. Naraharisetti, Pavan Kumar & Yeo, Tze Yuen & Bu, Jie, 2019. "New classification of CO2 mineralization processes and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 220-233.
    4. Noor Allesya Alis Ramli & Faradiella Mohd Kusin & Verma Loretta M. Molahid, 2021. "Influencing Factors of the Mineral Carbonation Process of Iron Ore Mining Waste in Sequestering Atmospheric Carbon Dioxide," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    5. Pan, Shu-Yuan & Lorente Lafuente, Ana Maria & Chiang, Pen-Chi, 2016. "Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization," Applied Energy, Elsevier, vol. 170(C), pages 269-277.
    6. Said, Arshe & Laukkanen, Timo & Järvinen, Mika, 2016. "Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag," Applied Energy, Elsevier, vol. 177(C), pages 602-611.
    7. Li, Hongwei & Zhang, Rongjun & Wang, Tianye & Wu, Yu & Xu, Run & Wang, Qiang & Tang, Zhigang, 2022. "Performance evaluation and environment risk assessment of steel slag enhancement for seawater to capture CO2," Energy, Elsevier, vol. 238(PB).
    8. Hosseini, Tahereh & Haque, Nawshad & Selomulya, Cordelia & Zhang, Lian, 2016. "Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – Process simulation and techno-economic analysis," Applied Energy, Elsevier, vol. 175(C), pages 54-68.
    9. Ren, Shan & Aldahri, Tahani & Liu, Weizao & Liang, Bin, 2021. "CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments," Energy, Elsevier, vol. 214(C).
    10. Lei Wang & Yuemei Tang & Yu Gong & Xiang Shao & Xiaochen Lin & Weili Xu & Yifan Zhu & Yongming Ju & Lili Shi & Dorota Kołodyńska, 2023. "Remediation of Micro-Pollution in an Alkaline Washing Solution of Fly Ash Using Simulated Exhaust Gas: Parameters and Mechanism," Sustainability, MDPI, vol. 15(7), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhihua Zhang, 2015. "Techno-Economic Assessment of Carbon Capture and Storage Facilities Coupled to Coal-Fired Power Plants," Energy & Environment, , vol. 26(6-7), pages 1069-1080, November.
    2. Li, Xiangyu & Wang, Zhiqing & Feng, Ru & Huang, Jiejie & Fang, Yitian, 2021. "CO2 capture on aminosilane functionalized alumina-extracted residue of catalytic gasification coal ash," Energy, Elsevier, vol. 221(C).
    3. Xing, Ji & Liu, Zhenyi & Huang, Ping & Feng, Changgen & Zhou, Yi & Sun, Ruiyan & Wang, Shigang, 2014. "CFD validation of scaling rules for reduced-scale field releases of carbon dioxide," Applied Energy, Elsevier, vol. 115(C), pages 525-530.
    4. Wang, Ke & Zhou, Zhongyun & Zhao, Pengfei & Yin, Zeguang & Su, Zhen & Sun, Ji, 2017. "Molten sodium-fluoride-promoted high-performance Li4SiO4-based CO2 sorbents at low CO2 concentrations," Applied Energy, Elsevier, vol. 204(C), pages 403-412.
    5. Maitri Verma & Alok Kumar Verma & A. K. Misra, 2021. "Mathematical modeling and optimal control of carbon dioxide emissions from energy sector," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13919-13944, September.
    6. Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.
    7. Said, Arshe & Laukkanen, Timo & Järvinen, Mika, 2016. "Pilot-scale experimental work on carbon dioxide sequestration using steelmaking slag," Applied Energy, Elsevier, vol. 177(C), pages 602-611.
    8. Guo, Yafei & Zhao, Chuanwen & Li, Changhai & Lu, Shouxiang, 2014. "Application of PEI–K2CO3/AC for capturing CO2 from flue gas after combustion," Applied Energy, Elsevier, vol. 129(C), pages 17-24.
    9. Ji, Long & Yu, Hai & Li, Kangkang & Yu, Bing & Grigore, Mihaela & Yang, Qi & Wang, Xiaolong & Chen, Zuliang & Zeng, Ming & Zhao, Shuaifei, 2018. "Integrated absorption-mineralisation for low-energy CO2 capture and sequestration," Applied Energy, Elsevier, vol. 225(C), pages 356-366.
    10. Zhang, Zhonghua & Wang, Baodong & Sun, Qi & Zheng, Lingru, 2014. "A novel method for the preparation of CO2 sorption sorbents with high performance," Applied Energy, Elsevier, vol. 123(C), pages 179-184.
    11. Eom, Seongyong & Ahn, Seongyool & Kang, Kijoong & Choi, Gyungmin, 2017. "Correlations between electrochemical resistances and surface properties of acid-treated fuel in coal fuel cells," Energy, Elsevier, vol. 140(P1), pages 885-892.
    12. Li, Xiangyu & Wang, Zhiqing & Liu, Zheyu & Feng, Ru & Song, Shuangshuang & Huang, Jiejie & Fang, Yitian, 2022. "A novel preparation of solid amine sorbents for enhancing CO2 adsorption capacity using alumina-extracted waste," Energy, Elsevier, vol. 248(C).
    13. Wang, Ke & Zhou, Zhongyun & Zhao, Pengfei & Yin, Zeguang & Su, Zhen & Sun, Ji, 2016. "Synthesis of a highly efficient Li4SiO4 ceramic modified with a gluconic acid-based carbon coating for high-temperature CO2 capture," Applied Energy, Elsevier, vol. 183(C), pages 1418-1427.
    14. Chen, Huiyao & Chu, Fengming & Yang, Lijun & Ola, Oluwafunmilola & Du, Xiaoze & Yang, Yongping, 2018. "Enhanced photocatalytic reduction of carbon dioxide in optical fiber monolith reactor with transparent glass balls," Applied Energy, Elsevier, vol. 230(C), pages 1403-1413.
    15. Qin, Changlei & Yin, Junjun & Ran, Jingyu & Zhang, Li & Feng, Bo, 2014. "Effect of support material on the performance of K2CO3-based pellets for cyclic CO2 capture," Applied Energy, Elsevier, vol. 136(C), pages 280-288.
    16. Ahn, Yuchan & Han, Jeehoon, 2018. "Economic optimization of integrated network for utility supply and carbon dioxide mitigation with multi-site and multi-period demand uncertainties," Applied Energy, Elsevier, vol. 220(C), pages 723-734.
    17. Zhao, Chuanwen & Guo, Yafei & Yan, Junjie & Sun, Jian & Li, Weiling & Lu, Ping, 2019. "Enhanced CO2 sorption capacity of amine-tethered fly ash residues derived from co-firing of coal and biomass blends," Applied Energy, Elsevier, vol. 242(C), pages 453-461.
    18. Pan, Shu-Yuan & Chiang, Pen-Chi & Chen, Yi-Hung & Tan, Chung-Sung & Chang, E.-E., 2014. "Kinetics of carbonation reaction of basic oxygen furnace slags in a rotating packed bed using the surface coverage model: Maximization of carbonation conversion," Applied Energy, Elsevier, vol. 113(C), pages 267-276.
    19. Hyunsoo Kim & Oyunbileg Purev & Kanghee Cho & Nagchoul Choi & Jaewon Lee & Seongjin Yoon, 2022. "Removal of Inorganic Salts in Municipal Solid Waste Incineration Fly Ash Using a Washing Ejector and Its Application for CO 2 Capture," IJERPH, MDPI, vol. 19(4), pages 1-15, February.
    20. Bobo Zheng & Jiuping Xu, 2014. "Carbon Capture and Storage Development Trends from a Techno-Paradigm Perspective," Energies, MDPI, vol. 7(8), pages 1-30, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:142:y:2015:i:c:p:274-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.