IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v230y2018icp1403-1413.html
   My bibliography  Save this article

Enhanced photocatalytic reduction of carbon dioxide in optical fiber monolith reactor with transparent glass balls

Author

Listed:
  • Chen, Huiyao
  • Chu, Fengming
  • Yang, Lijun
  • Ola, Oluwafunmilola
  • Du, Xiaoze
  • Yang, Yongping

Abstract

Photocatalytic reduction of carbon dioxide to produce methanol is a promising approach to restrain greenhouse gases emissions and mitigate energy shortage, which attracts extensive concerns in recent years. The optical fiber monolith reactor with solid glass balls for photocatalytic carbon dioxide reduction is proposed in this work to increase the product concentration, and the glass balls are transparent and coated with photocatalysts evenly to absorb light. The photocatalytic reduction of carbon dioxide in optical fiber monolith reactor is numerically investigated, by which the effects of glass ball number, location, circle and layer on the production are analyzed. The results show that in the single-circle and single-layer model, the outlet methanol concentration increases with increasing the ball number. The closer to the fiber and reactor inlet the balls keep, the higher the methanol production is. As the circle and layer numbers increase, the methanol concentration also increases. The outlet methanol average concentration of the optical fiber monolith reactor with 3-circle and 5-layer balls gets 11.43% higher than the case without glass balls.

Suggested Citation

  • Chen, Huiyao & Chu, Fengming & Yang, Lijun & Ola, Oluwafunmilola & Du, Xiaoze & Yang, Yongping, 2018. "Enhanced photocatalytic reduction of carbon dioxide in optical fiber monolith reactor with transparent glass balls," Applied Energy, Elsevier, vol. 230(C), pages 1403-1413.
  • Handle: RePEc:eee:appene:v:230:y:2018:i:c:p:1403-1413
    DOI: 10.1016/j.apenergy.2018.09.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918313928
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.09.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delavari, Saeed & Amin, Nor Aishah Saidina, 2016. "Photocatalytic conversion of CO2 and CH4 over immobilized titania nanoparticles coated on mesh: Optimization and kinetic study," Applied Energy, Elsevier, vol. 162(C), pages 1171-1185.
    2. Cheng, Ya-Hsin & Nguyen, Van-Huy & Chan, Hsiang-Yu & Wu, Jeffrey C.S. & Wang, Wei-Hon, 2015. "Photo-enhanced hydrogenation of CO2 to mimic photosynthesis by CO co-feed in a novel twin reactor," Applied Energy, Elsevier, vol. 147(C), pages 318-324.
    3. Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2016. "CO2 capture using MEA (monoethanolamine) aqueous solution in coal-fired power plants: Modeling and optimization of the absorbing columns," Energy, Elsevier, vol. 109(C), pages 495-505.
    4. Wan, Kevin K.W. & Li, Danny H.W. & Pan, Wenyan & Lam, Joseph C., 2012. "Impact of climate change on building energy use in different climate zones and mitigation and adaptation implications," Applied Energy, Elsevier, vol. 97(C), pages 274-282.
    5. Ramachandriya, Karthikeyan D. & Kundiyana, Dimple K. & Wilkins, Mark R. & Terrill, Jennine B. & Atiyeh, Hasan K. & Huhnke, Raymond L., 2013. "Carbon dioxide conversion to fuels and chemicals using a hybrid green process," Applied Energy, Elsevier, vol. 112(C), pages 289-299.
    6. Reilly, Kevin & Wilkinson, David P. & Taghipour, Fariborz, 2018. "Photocatalytic water splitting in a fluidized bed system: Computational modeling and experimental studies," Applied Energy, Elsevier, vol. 222(C), pages 423-436.
    7. Chu, Fengming & Liu, Yifang & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Ammonia escape mass transfer and heat transfer characteristics of CO2 absorption in packed absorbing column," Applied Energy, Elsevier, vol. 205(C), pages 1596-1604.
    8. Pérez-Fortes, Mar & Schöneberger, Jan C. & Boulamanti, Aikaterini & Tzimas, Evangelos, 2016. "Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment," Applied Energy, Elsevier, vol. 161(C), pages 718-732.
    9. Beatrice Castellani & Alberto Maria Gambelli & Elena Morini & Benedetto Nastasi & Andrea Presciutti & Mirko Filipponi & Andrea Nicolini & Federico Rossi, 2017. "Experimental Investigation on CO 2 Methanation Process for Solar Energy Storage Compared to CO 2 -Based Methanol Synthesis," Energies, MDPI, vol. 10(7), pages 1-13, June.
    10. Wee, Jung-Ho, 2013. "A review on carbon dioxide capture and storage technology using coal fly ash," Applied Energy, Elsevier, vol. 106(C), pages 143-151.
    11. Chu, Fengming & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Mass transfer and energy consumption for CO2 absorption by ammonia solution in bubble column," Applied Energy, Elsevier, vol. 190(C), pages 1068-1080.
    12. Tahir, Muhammad & Amin, NorAishah Saidina, 2013. "Recycling of carbon dioxide to renewable fuels by photocatalysis: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 560-579.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong, Kai & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2020. "Review of modeling and simulation strategies for unstructured packing bed photoreactors with CFD method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chu, Fengming & Gao, Qianhong & Li, Shang & Yang, Guoan & Luo, Yan, 2020. "Mass transfer characteristic of ammonia escape and energy penalty analysis in the regeneration process," Applied Energy, Elsevier, vol. 258(C).
    2. Kuo, Yen-Ting & Almansa, G. Aranda & Vreugdenhil, B.J., 2018. "Catalytic aromatization of ethylene in syngas from biomass to enhance economic sustainability of gas production," Applied Energy, Elsevier, vol. 215(C), pages 21-30.
    3. Giorgetti, S. & Bricteux, L. & Parente, A. & Blondeau, J. & Contino, F. & De Paepe, W., 2017. "Carbon capture on micro gas turbine cycles: Assessment of the performance on dry and wet operations," Applied Energy, Elsevier, vol. 207(C), pages 243-253.
    4. Wang, Fu & Zhao, Jun & Miao, He & Zhao, Jiapei & Zhang, Houcheng & Yuan, Jinliang & Yan, Jinyue, 2018. "Current status and challenges of the ammonia escape inhibition technologies in ammonia-based CO2 capture process," Applied Energy, Elsevier, vol. 230(C), pages 734-749.
    5. Wang, Lidong & Yu, Songhua & Li, Qiangwei & Zhang, Yifeng & An, Shanlong & Zhang, Shihan, 2018. "Performance of sulfolane/DETA hybrids for CO2 absorption: Phase splitting behavior, kinetics and thermodynamics," Applied Energy, Elsevier, vol. 228(C), pages 568-576.
    6. Yifang Liu & Fengming Chu & Lijun Yang & Xiaoze Du & Yongping Yang, 2018. "CO2 absorption characteristics in a random packed column with various geometric structures and working conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(1), pages 120-132, February.
    7. Song, Chunfeng & Xie, Meilian & Qiu, Yiting & Liu, Qingling & Sun, Luchang & Wang, Kailiang & Kansha, Yasuki, 2019. "Integration of CO2 absorption with biological transformation via using rich ammonia solution as a nutrient source for microalgae cultivation," Energy, Elsevier, vol. 179(C), pages 618-627.
    8. Chauvy, Remi & Meunier, Nicolas & Thomas, Diane & De Weireld, Guy, 2019. "Selecting emerging CO2 utilization products for short- to mid-term deployment," Applied Energy, Elsevier, vol. 236(C), pages 662-680.
    9. Chen, Chao & Lu, Yangsiyu & Banares-Alcantara, Rene, 2019. "Direct and indirect electrification of chemical industry using methanol production as a case study," Applied Energy, Elsevier, vol. 243(C), pages 71-90.
    10. Chu, Fengming & Liu, Yifang & Yang, Lijun & Du, Xiaoze & Yang, Yongping, 2017. "Ammonia escape mass transfer and heat transfer characteristics of CO2 absorption in packed absorbing column," Applied Energy, Elsevier, vol. 205(C), pages 1596-1604.
    11. Cheng, Xiao & Chen, Rong & Zhu, Xun & Liao, Qiang & An, Liang & Ye, Dingding & He, Xuefeng & Li, Shuzhe & Li, Lin, 2017. "An optofluidic planar microreactor for photocatalytic reduction of CO2 in alkaline environment," Energy, Elsevier, vol. 120(C), pages 276-282.
    12. Al-Kalbani, Haitham & Xuan, Jin & García, Susana & Wang, Huizhi, 2016. "Comparative energetic assessment of methanol production from CO2: Chemical versus electrochemical process," Applied Energy, Elsevier, vol. 165(C), pages 1-13.
    13. Li, Wenjia & Hao, Yong & Wang, Hongsheng & Liu, Hao & Sui, Jun, 2017. "Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage," Applied Energy, Elsevier, vol. 206(C), pages 1523-1531.
    14. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    15. Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    16. Cui, Ying & Yan, Da & Hong, Tianzhen & Xiao, Chan & Luo, Xuan & Zhang, Qi, 2017. "Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China," Applied Energy, Elsevier, vol. 195(C), pages 890-904.
    17. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    18. Han, Sang-Jun & Im, Hye Jin & Wee, Jung-Ho, 2015. "Leaching and indirect mineral carbonation performance of coal fly ash-water solution system," Applied Energy, Elsevier, vol. 142(C), pages 274-282.
    19. Zhang, Rui & Yang, Qi & Yu, Bing & Yu, Hai & Liang, Zhiwu, 2018. "Toward to efficient CO2 capture solvent design by analyzing the effect of substituent type connected to N-atom," Energy, Elsevier, vol. 144(C), pages 1064-1072.
    20. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:230:y:2018:i:c:p:1403-1413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.