IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v228y2021ics0360544221008471.html
   My bibliography  Save this article

Energy analysis and economic feasibility of wood dryers integrated with heat recovery unit and solar air heaters in cold and hot climates

Author

Listed:
  • Lamrani, Bilal
  • Kuznik, Frédéric
  • Ajbar, Abdelhamid
  • Boumaza, Mourad

Abstract

In this paper, the energy performance and economic feasibility of conventional wood dryer systems integrated with a heat recovery unit and solar air heaters are numerically investigated. Four different designs of wood dryers, composed of an insulated drying chamber, a heat recovery unit (HRU), a flat plate air collector (FPC), a photovoltaic/thermal air collector (PVT) and an auxiliary heater, are presented and compared. Annual dynamic simulations were carried out using a heat and mass transfer model with realistic meteorological data from two different climatic zones as boundary conditions. The effect of recovering waste heat and integrating each type of solar air heaters on the wood dryer energy consumption are presented and analyzed. Results show that recovering waste heat from conventional wood dryers in cold climate is more beneficial than in hot climate with an annual energy consumption reduction up to 41%. It is also shown that using a combined heat recovery unit and PVT collector improved significantly the energy efficiency of conventional dryers and reduced by about 67.5% and 49.5% the yearly energy consumption in hot and cold climates, respectively. Based on the economic analysis, the use of the HRU is beneficial in both climatic zones with a maximum payback period of 2 years. However, the use of the PVT collector is recommended only for wood dryers in hot climates where the payback period is about 3.5 years.

Suggested Citation

  • Lamrani, Bilal & Kuznik, Frédéric & Ajbar, Abdelhamid & Boumaza, Mourad, 2021. "Energy analysis and economic feasibility of wood dryers integrated with heat recovery unit and solar air heaters in cold and hot climates," Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008471
    DOI: 10.1016/j.energy.2021.120598
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221008471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lamrani, Bilal & Kuznik, Frédéric & Draoui, Abdeslam, 2020. "Thermal performance of a coupled solar parabolic trough collector latent heat storage unit for solar water heating in large buildings," Renewable Energy, Elsevier, vol. 162(C), pages 411-426.
    2. Sattar, M.A., 1994. "Major energy saving by use of solar timber drying in developing countries," Renewable Energy, Elsevier, vol. 5(1), pages 457-464.
    3. Luna, D. & Nadeau, J.-P. & Jannot, Y., 2009. "Solar timber kilns: State of the art and foreseeable developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1446-1455, August.
    4. Khouya, Ahmed, 2020. "Effect of regeneration heat and energy storage on thermal drying performance in a hardwood solar kiln," Renewable Energy, Elsevier, vol. 155(C), pages 783-799.
    5. Bekkioui, Naoual, 2021. "Performance comparison and economic analysis of three solar dryer designs for wood using a numerical simulation," Renewable Energy, Elsevier, vol. 164(C), pages 815-823.
    6. Khouya, A. & Draoui, A., 2019. "Computational drying model for solar kiln with latent heat energy storage: Case studies of thermal application," Renewable Energy, Elsevier, vol. 130(C), pages 796-813.
    7. Luna, D. & Nadeau, J.-P. & Jannot, Y., 2010. "Model and simulation of a solar kiln with energy storage," Renewable Energy, Elsevier, vol. 35(11), pages 2533-2542.
    8. Fudholi, Ahmad & Zohri, Muhammad & Rukman, Nurul Shahirah Binti & Nazri, Nurul Syakirah & Mustapha, Muslizainun & Yen, Chan Hoy & Mohammad, Masita & Sopian, Kamaruzzaman, 2019. "Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 44-51.
    9. Kumar, Rakesh & Rosen, Marc A., 2011. "A critical review of photovoltaic–thermal solar collectors for air heating," Applied Energy, Elsevier, vol. 88(11), pages 3603-3614.
    10. Dubey, Swapnil & Sandhu, G.S. & Tiwari, G.N., 2009. "Analytical expression for electrical efficiency of PV/T hybrid air collector," Applied Energy, Elsevier, vol. 86(5), pages 697-705, May.
    11. Bentayeb, F. & Bekkioui, N. & Zeghmati, B., 2008. "Modelling and simulation of a wood solar dryer in a Moroccan climate," Renewable Energy, Elsevier, vol. 33(3), pages 501-506.
    12. Zhang, Qunli & Zhang, Lin & Nie, Jinzhe & Li, Yinlong, 2017. "Techno-economic analysis of air source heat pump applied for space heating in northern China," Applied Energy, Elsevier, vol. 207(C), pages 533-542.
    13. Bell, Martha & Carrington, Gerry & Lawson, Rob & Stephenson, Janet, 2014. "Socio-technical barriers to the use of energy-efficient timber drying technology in New Zealand," Energy Policy, Elsevier, vol. 67(C), pages 747-755.
    14. Bekkioui, Naoual & El hakiki, Sarra & Rachadi, Abdeljalil & Ez-Zahraouy, Hamid, 2020. "One-year simulation of a solar wood dryer with glazed walls in a Moroccan climate," Renewable Energy, Elsevier, vol. 155(C), pages 770-782.
    15. Joshi, Sandeep S. & Dhoble, Ashwinkumar S., 2018. "Photovoltaic -Thermal systems (PVT): Technology review and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 848-882.
    16. Tiwari, Sumit & Agrawal, Sanjay & Tiwari, G.N., 2018. "PVT air collector integrated greenhouse dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 142-159.
    17. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lamrani, Bilal & Elmrabet, Yasmine & Mathew, Ibeh & Bekkioui, Naoual & Etim, Promise & Chahboun, Adil & Draoui, Abdeslam & Ndukwu, Macmanus Chinenye, 2022. "Energy, economic analysis and mathematical modelling of mixed-mode solar drying of potato slices with thermal storage loaded V-groove collector: Application to Maghreb region," Renewable Energy, Elsevier, vol. 200(C), pages 48-58.
    2. Amine Allouhi, 2023. "Latent Thermal Energy Storage for Solar Industrial Drying Applications," Sustainability, MDPI, vol. 15(17), pages 1-18, September.
    3. Kong, Decheng & Wang, Yunfeng & Li, Ming & Liang, Jingkang, 2022. "Experimental investigation of a novel hybrid drying system powered by a solar photovoltaic/thermal air collector and wind turbine," Renewable Energy, Elsevier, vol. 194(C), pages 705-718.
    4. Gradov, Dmitry Vladimirovich & Yusuf, Yusuf Oluwatoki & Ohjainen, Jussi & Suuronen, Jarkko & Eskola, Roope & Roininen, Lassi & Koiranen, Tuomas, 2022. "Modelling of a continuous veneer drying unit of industrial scale and model-based ANOVA of the energy efficiency," Energy, Elsevier, vol. 244(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Bekkioui, Naoual & El hakiki, Sarra & Rachadi, Abdeljalil & Ez-Zahraouy, Hamid, 2020. "One-year simulation of a solar wood dryer with glazed walls in a Moroccan climate," Renewable Energy, Elsevier, vol. 155(C), pages 770-782.
    3. Bekkioui, Naoual, 2021. "Performance comparison and economic analysis of three solar dryer designs for wood using a numerical simulation," Renewable Energy, Elsevier, vol. 164(C), pages 815-823.
    4. Rounis, Efstratios Dimitrios & Athienitis, Andreas & Stathopoulos, Theodore, 2021. "Review of air-based PV/T and BIPV/T systems - Performance and modelling," Renewable Energy, Elsevier, vol. 163(C), pages 1729-1753.
    5. Khouya, Ahmed, 2020. "Effect of regeneration heat and energy storage on thermal drying performance in a hardwood solar kiln," Renewable Energy, Elsevier, vol. 155(C), pages 783-799.
    6. Hasan, Mahmudul & Zhang, Mengze & Wu, Weinan & Langrish, Timothy A.G., 2016. "Discounted cash flow analysis of greenhouse-type solar kilns," Renewable Energy, Elsevier, vol. 95(C), pages 404-412.
    7. Yao, Jian & Dou, Pengbo & Zheng, Sihang & Zhao, Yao & Dai, Yanjun & Zhu, Junjie & Novakovic, Vojislav, 2022. "Co-generation ability investigation of the novel structured PVT heat pump system and its effect on the “Carbon neutral” strategy of Shanghai," Energy, Elsevier, vol. 239(PA).
    8. Khouya, Ahmed, 2021. "Modelling and analysis of a hybrid solar dryer for woody biomass," Energy, Elsevier, vol. 216(C).
    9. Shiva Gorjian & Behnam Hosseingholilou & Laxmikant D. Jathar & Haniyeh Samadi & Samiran Samanta & Atul A. Sagade & Karunesh Kant & Ravishankar Sathyamurthy, 2021. "Recent Advancements in Technical Design and Thermal Performance Enhancement of Solar Greenhouse Dryers," Sustainability, MDPI, vol. 13(13), pages 1-32, June.
    10. Hu, Jianjun & Zhang, Guangqiu & Zhu, Qing & Guo, Meng & Chen, Lijuan, 2019. "A self-driven mechanical ventilated solar air collector: Design and experimental study," Energy, Elsevier, vol. 189(C).
    11. Hussain, F. & Othman, M.Y.H & Sopian, K. & Yatim, B. & Ruslan, H. & Othman, H., 2013. "Design development and performance evaluation of photovoltaic/thermal (PV/T) air base solar collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 431-441.
    12. Sathe, Tushar M. & Dhoble, A.S., 2017. "A review on recent advancements in photovoltaic thermal techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 645-672.
    13. Salameh, Tareq & Tawalbeh, Muhammad & Juaidi, Adel & Abdallah, Ramez & Hamid, Abdul-Kadir, 2021. "A novel three-dimensional numerical model for PV/T water system in hot climate region," Renewable Energy, Elsevier, vol. 164(C), pages 1320-1333.
    14. Jin-Hee Kim & Ji-Suk Yu & Jun-Tae Kim, 2021. "An Experimental Study on the Energy and Exergy Performance of an Air-Type PVT Collector with Perforated Baffle," Energies, MDPI, vol. 14(10), pages 1-13, May.
    15. Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2019. "Development and applications of photovoltaic–thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 249-265.
    16. Ugwu, S.N. & Ugwuishiwu, B.O. & Ekechukwu, O.V. & Njoku, H. & Ani, A.O., 2015. "Design, construction, and evaluation of a mixed mode solar kiln with black-painted pebble bed for timber seasoning in a tropical setting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1404-1412.
    17. Zoukit, Ahmed & El Ferouali, Hicham & Salhi, Issam & Doubabi, Said & Abdenouri, Naji, 2019. "Simulation, design and experimental performance evaluation of an innovative hybrid solar-gas dryer," Energy, Elsevier, vol. 189(C).
    18. Philip, Nadiya & Duraipandi, Sruthi & Sreekumar, A., 2022. "Techno-economic analysis of greenhouse solar dryer for drying agricultural produce," Renewable Energy, Elsevier, vol. 199(C), pages 613-627.
    19. Josué F. Rosales-Pérez & Andrés Villarruel-Jaramillo & José A. Romero-Ramos & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Hybrid System of Photovoltaic and Solar Thermal Technologies for Industrial Process Heat," Energies, MDPI, vol. 16(5), pages 1-45, February.
    20. Buker, Mahmut Sami & Riffat, Saffa B., 2015. "Building integrated solar thermal collectors – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 327-346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.