IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v226y2021ics036054422100671x.html
   My bibliography  Save this article

Enhanced bioenergy recovery and nutrient removal from swine wastewater using an airlift-type photosynthetic microbial fuel cell

Author

Listed:
  • Li, Ming
  • Zhou, Minghua
  • Tian, Xiaoyu
  • Tan, Chaolin
  • Gu, Tingyue

Abstract

Swine wastewater (SW) was used herein as the substrate in an airlift-type photosynthetic microbial fuel cell (APMFC) for power generation, and also, after anode pre-treatment, as a medium for Chlorella vulgaris cultivation in the cathode compartment accompanied with CO2 biofixation. Compared to heterotrophic cultivation, APMFC under mixotrophic cultivation showed a better performance in biomass yield, lipid accumulation and power generation. The highest chemical oxygen demand (COD) removal (96.3%), total organic carbon (TOC) removal (95.1%), NH4+-N removal (99.1%), and total phosphorus (TP) removal (98.9%) were achieved using 2-fold diluted SW. In APMFC (SW of 2-fold dilution), the highest CO2 biofixation rate and lipid productivity reached 1149 mg L−1 d−1 and 164 mg L−1 d−1, respectively. Ammonium migration from the anodic compartment to the cathodic compartment gradually increased as the ammonium concentration increased in the anolyte. The energy balance analysis suggested that the highest net energy output reached 1.92 kWh m−3 in APMFC fed with 2-fold diluted SW, which showed a superiority in clean energy production. Microbial community analysis indicated that the electrogenic microorganisms were further enriched in the anodic biofilm, which could enhance the power generation. This study provided a promising way for simultaneous SW treatment, CO2 biofixation and bioenergy generation.

Suggested Citation

  • Li, Ming & Zhou, Minghua & Tian, Xiaoyu & Tan, Chaolin & Gu, Tingyue, 2021. "Enhanced bioenergy recovery and nutrient removal from swine wastewater using an airlift-type photosynthetic microbial fuel cell," Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:energy:v:226:y:2021:i:c:s036054422100671x
    DOI: 10.1016/j.energy.2021.120422
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422100671X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120422?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eloka-Eboka, Andrew C. & Inambao, Freddie L., 2017. "Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production," Applied Energy, Elsevier, vol. 195(C), pages 1100-1111.
    2. Razzak, Shaikh Abdur & Ali, Saad Aldin M. & Hossain, Mohammad Mozahar & deLasa, Hugo, 2017. "Biological CO2 fixation with production of microalgae in wastewater – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 379-390.
    3. Jiang, Mengmeng & Westerholm, Maria & Qiao, Wei & Wandera, Simon M. & Dong, Renjie, 2020. "High rate anaerobic digestion of swine wastewater in an anaerobic membrane bioreactor," Energy, Elsevier, vol. 193(C).
    4. Wu, Yi-cheng & Wang, Ze-jie & Zheng, Yue & Xiao, Yong & Yang, Zhao-hui & Zhao, Feng, 2014. "Light intensity affects the performance of photo microbial fuel cells with Desmodesmus sp. A8 as cathodic microorganism," Applied Energy, Elsevier, vol. 116(C), pages 86-90.
    5. ElMekawy, Ahmed & Hegab, Hanaa M. & Vanbroekhoven, Karolien & Pant, Deepak, 2014. "Techno-productive potential of photosynthetic microbial fuel cells through different configurations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 617-627.
    6. Sajjadi, Baharak & Chen, Wei-Yin & Raman, Abdul. Aziz. Abdul & Ibrahim, Shaliza, 2018. "Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 200-232.
    7. Molinuevo-Salces, Beatriz & Mahdy, Ahmed & Ballesteros, Mercedes & González-Fernández, Cristina, 2016. "From piggery wastewater nutrients to biogas: Microalgae biomass revalorization through anaerobic digestion," Renewable Energy, Elsevier, vol. 96(PB), pages 1103-1110.
    8. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    9. Ismail, Zainab Z. & Habeeb, Ali A., 2017. "Experimental and modeling study of simultaneous power generation and pharmaceutical wastewater treatment in microbial fuel cell based on mobilized biofilm bearers," Renewable Energy, Elsevier, vol. 101(C), pages 1256-1265.
    10. Zhang, Ying & Liu, Mengmeng & Zhou, Minghua & Yang, Huijia & Liang, Liang & Gu, Tingyue, 2019. "Microbial fuel cell hybrid systems for wastewater treatment and bioenergy production: Synergistic effects, mechanisms and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 13-29.
    11. Gao, Shumei & Hu, Changwei & Sun, Shiqing & Xu, Jie & Zhao, Yongjun & Zhang, Hui, 2018. "Performance of piggery wastewater treatment and biogas upgrading by three microalgal cultivation technologies under different initial COD concentration," Energy, Elsevier, vol. 165(PB), pages 360-369.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tonni Agustiono Kurniawan & Mohd Hafiz Dzarfan Othman & Xue Liang & Muhammad Ayub & Hui Hwang Goh & Tutuk Djoko Kusworo & Ayesha Mohyuddin & Kit Wayne Chew, 2022. "Microbial Fuel Cells (MFC): A Potential Game-Changer in Renewable Energy Development," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    2. Wang, Linlin & Zhao, Runqi & Wang, Qi & Han, Zhaoze & Mao, Xian-zhong, 2022. "Novel bioreactor with inclined baffles in cost-efficiently increasing algal biomass and carbon fixation," Energy, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Qiulian & Li, Haitao & Wang, Dong & Zhang, Xiaochun & Guo, Xiangqian & Pu, Shaochen & Guo, Ruixin & Chen, Jianqiu, 2020. "Utilization of chemical wastewater for CO2 emission reduction: Purified terephthalic acid (PTA) wastewater-mediated culture of microalgae for CO2 bio-capture," Applied Energy, Elsevier, vol. 276(C).
    2. Lim, Yi An & Chong, Meng Nan & Foo, Su Chern & Ilankoon, I.M.S.K., 2021. "Analysis of direct and indirect quantification methods of CO2 fixation via microalgae cultivation in photobioreactors: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Wu, Wenbo & Tan, Ling & Chang, Haixing & Zhang, Chaofan & Tan, Xuefei & Liao, Qiang & Zhong, Nianbing & Zhang, Xianming & Zhang, Yuanbo & Ho, Shih-Hsin, 2023. "Advancements on process regulation for microalgae-based carbon neutrality and biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    4. Aziz, Md Maniruzzaman A. & Kassim, Khairul Anuar & Shokravi, Zahra & Jakarni, Fauzan Mohd & Liu, Hong Yuan & Zaini, Nabilah & Tan, Lian See & Islam, A.B.M. Saiful & Shokravi, Hoofar, 2020. "Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Saba, Beenish & Christy, Ann D. & Yu, Zhongtang & Co, Anne C., 2017. "Sustainable power generation from bacterio-algal microbial fuel cells (MFCs): An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 75-84.
    6. Rahul Prasad Singh & Priya Yadav & Indrajeet Kumar & Manoj Kumar Solanki & Rajib Roychowdhury & Ajay Kumar & Rajan Kumar Gupta, 2023. "Advancement of Abiotic Stresses for Microalgal Lipid Production and Its Bioprospecting into Sustainable Biofuels," Sustainability, MDPI, vol. 15(18), pages 1-36, September.
    7. Meneses-Quelal Orlando & Velázquez-Martí Borja, 2020. "Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review," Energies, MDPI, vol. 13(14), pages 1-28, July.
    8. Wang, Fang & Zhang, Deli & Shen, Xiuli & Liu, Weidong & Yi, Weiming & Li, Zhihe & Liu, Shanjian, 2019. "Synchronously electricity generation and degradation of biogas slurry using microbial fuel cell," Renewable Energy, Elsevier, vol. 142(C), pages 158-166.
    9. Siswo Sumardiono & Bakti Jos & Agata Advensia Eksa Dewanti & Isa Mahendra & Heri Cahyono, 2021. "Biogas Production from Coffee Pulp and Chicken Feathers Using Liquid- and Solid-State Anaerobic Digestions," Energies, MDPI, vol. 14(15), pages 1-15, August.
    10. Hussain, Fida & Shah, Syed Z. & Ahmad, Habib & Abubshait, Samar A. & Abubshait, Haya A. & Laref, A. & Manikandan, A. & Kusuma, Heri S. & Iqbal, Munawar, 2021. "Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    12. Oliveira, Verónica & Kirkelund, Gunvor M. & Horta, Carmo & Labrincha, João & Dias-Ferreira, Celia, 2019. "Improving the energy efficiency of an electrodialytic process to extract phosphorus from municipal solid waste digestate through different strategies," Applied Energy, Elsevier, vol. 247(C), pages 182-189.
    13. ElMekawy, Ahmed & Hegab, Hanaa M. & Losic, Dusan & Saint, Christopher P. & Pant, Deepak, 2017. "Applications of graphene in microbial fuel cells: The gap between promise and reality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1389-1403.
    14. Emilia Neag & Zamfira Stupar & S. Andrada Maicaneanu & Cecilia Roman, 2023. "Advances in Biodiesel Production from Microalgae," Energies, MDPI, vol. 16(3), pages 1-18, January.
    15. Thao Nguyen Luu & Zouheir Alsafra & Amélie Corato & Daniele Corsaro & Hung Anh Le & Gauthier Eppe & Claire Remacle, 2020. "Isolation and Characterization of Two Microalgal Isolates from Vietnam with Potential for Food, Feed, and Biodiesel Production," Energies, MDPI, vol. 13(4), pages 1-16, February.
    16. Wu, Lan & Wei, Wei & Song, Lan & Woźniak-Karczewska, Marta & Chrzanowski, Łukasz & Ni, Bing-Jie, 2021. "Upgrading biogas produced in anaerobic digestion: Biological removal and bioconversion of CO2 in biogas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Chang, Wenjuan & Li, Yanpeng & Qu, Yanhui & Liu, Yi & Zhang, Gaoshan & Zhao, Yan & Liu, Siyu, 2022. "Mixotrophic cultivation of microalgae to enhance the biomass and lipid production with synergistic effect of red light and phytohormone IAA," Renewable Energy, Elsevier, vol. 187(C), pages 819-828.
    18. Tajdid Khajeh, Rana & Aber, Soheil & Zarei, Mahmoud, 2020. "Comparison of NiCo2O4, CoNiAl-LDH, and CoNiAl-LDH@NiCo2O4 performances as ORR catalysts in MFC cathode," Renewable Energy, Elsevier, vol. 154(C), pages 1263-1271.
    19. Li, Pengfei & Sun, Xin & Sun, Zhe & Huang, Feng & Wei, Wenqian & Liu, Xingshe & Liu, Yongjun & Deng, Linyu & Cheng, Zhiwen, 2021. "Biochemical and genetic changes revealing the enhanced lipid accumulation in Desmodesmus sp. mutated by atmospheric and room temperature plasma," Renewable Energy, Elsevier, vol. 172(C), pages 368-381.
    20. Hong-Duck Ryu & Do Young Lim & Sun-Jung Kim & Un-Il Baek & Eu Gene Chung & Kyunghyun Kim & Jae Kwan Lee, 2020. "Struvite Precipitation for Sustainable Recovery of Nitrogen and Phosphorus from Anaerobic Digestion Effluents of Swine Manure," Sustainability, MDPI, vol. 12(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:226:y:2021:i:c:s036054422100671x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.