IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v247y2022ics0360544222003565.html
   My bibliography  Save this article

Novel bioreactor with inclined baffles in cost-efficiently increasing algal biomass and carbon fixation

Author

Listed:
  • Wang, Linlin
  • Zhao, Runqi
  • Wang, Qi
  • Han, Zhaoze
  • Mao, Xian-zhong

Abstract

We assess the cultivation of microalgae and possible improvements of photobioreactor (PBR) design and operation. A systematic method based on numerical modeling and experiments was proposed to guide the study of reactor performance. Taking the novel flat plate photobioreactor (FPPBR) with inclined baffles (IBs) as an example, the method was applied to investigate an effective way to improve the cultivation potential of the reactor. To obtain good mass transfer and light utilization, the optimal ratio of baffle opening gap to bioreactor width was 0.25. The algal biomass in the FPPBR with IBs at 3% CO2 aeration and an aeration rate of 0.05 vessel volume per minute (vvm) was 27.08% and 48.34% higher than that of FPPBR without baffles under the same cultivation conditions and higher air aeration rate of 0.15 vvm. The maximum carbon fixation rate increased by 106% when using the IBs under the same 3% CO2 aeration condition. The installation of the optimal IBs made it possible to achieve highly efficient cultivation under low energy aeration input, and it is also a cost-efficient way to increase carbon fixation in the bioreactor.

Suggested Citation

  • Wang, Linlin & Zhao, Runqi & Wang, Qi & Han, Zhaoze & Mao, Xian-zhong, 2022. "Novel bioreactor with inclined baffles in cost-efficiently increasing algal biomass and carbon fixation," Energy, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222003565
    DOI: 10.1016/j.energy.2022.123453
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222003565
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123453?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Naraharisetti, Pavan Kumar & Das, Probir & Sharratt, Paul N., 2017. "Critical factors in energy generation from microalgae," Energy, Elsevier, vol. 120(C), pages 138-152.
    2. Qian Kang & Tianwei Tan, 2016. "Exergy and CO 2 Analyses as Key Tools for the Evaluation of Bio-Ethanol Production," Sustainability, MDPI, vol. 8(1), pages 1-11, January.
    3. Yadala, Soumya & Cremaschi, Selen, 2014. "Design and optimization of artificial cultivation units for algae production," Energy, Elsevier, vol. 78(C), pages 23-39.
    4. Telles, E.C. & Yang, S. & Vargas, J.V.C. & Dias, F.G. & Ordonez, J.C. & Mariano, A.B. & Chagas, M.B. & Davis, T., 2018. "A genset and mini-photobioreactor association for CO2 capturing, enhanced microalgae growth and multigeneration," Renewable Energy, Elsevier, vol. 125(C), pages 985-994.
    5. Li, Ming & Zhou, Minghua & Tian, Xiaoyu & Tan, Chaolin & Gu, Tingyue, 2021. "Enhanced bioenergy recovery and nutrient removal from swine wastewater using an airlift-type photosynthetic microbial fuel cell," Energy, Elsevier, vol. 226(C).
    6. Song, Chunfeng & Xie, Meilian & Qiu, Yiting & Liu, Qingling & Sun, Luchang & Wang, Kailiang & Kansha, Yasuki, 2019. "Integration of CO2 absorption with biological transformation via using rich ammonia solution as a nutrient source for microalgae cultivation," Energy, Elsevier, vol. 179(C), pages 618-627.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    2. Saumya Verma & Raja Chowdhury & Sarat K. Das & Matthew J. Franchetti & Gang Liu, 2021. "Sunlight Intensity, Photosynthetically Active Radiation Modelling and Its Application in Algae-Based Wastewater Treatment and Its Cost Estimation," Sustainability, MDPI, vol. 13(21), pages 1-28, October.
    3. Arcigni, Francesco & Friso, Riccardo & Collu, Maurizio & Venturini, Mauro, 2019. "Harmonized and systematic assessment of microalgae energy potential for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 614-624.
    4. Tonni Agustiono Kurniawan & Mohd Hafiz Dzarfan Othman & Xue Liang & Muhammad Ayub & Hui Hwang Goh & Tutuk Djoko Kusworo & Ayesha Mohyuddin & Kit Wayne Chew, 2022. "Microbial Fuel Cells (MFC): A Potential Game-Changer in Renewable Energy Development," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    5. Faried, M. & Samer, M. & Abdelsalam, E. & Yousef, R.S. & Attia, Y.A. & Ali, A.S., 2017. "Biodiesel production from microalgae: Processes, technologies and recent advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 893-913.
    6. Ngamsirisomsakul, Marika & Reungsang, Alissara & Liao, Qiang & Kongkeitkajorn, Mallika Boonmee, 2019. "Enhanced bio-ethanol production from Chlorella sp. biomass by hydrothermal pretreatment and enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 141(C), pages 482-492.
    7. Shokrkar, Hanieh & Ebrahimi, Sirous, 2018. "Evaluation of different enzymatic treatment procedures on sugar extraction from microalgal biomass, experimental and kinetic study," Energy, Elsevier, vol. 148(C), pages 258-268.
    8. Xia, Ao & Sun, Chihe & Fu, Qian & Liao, Qiang & Huang, Yun & Zhu, Xun & Li, Qing, 2020. "Biofuel production from wet microalgae biomass: Comparison of physicochemical properties and extraction performance," Energy, Elsevier, vol. 212(C).
    9. Singh, Yengkhom Disco & Mahanta, Pinakeswar & Bora, Utpal, 2017. "Comprehensive characterization of lignocellulosic biomass through proximate, ultimate and compositional analysis for bioenergy production," Renewable Energy, Elsevier, vol. 103(C), pages 490-500.
    10. Deng, Yimin & Li, Shuo & Appels, Lise & Zhang, Huili & Sweygers, Nick & Baeyens, Jan & Dewil, Raf, 2023. "Steam reforming of ethanol by non-noble metal catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    11. Kumar, Anup & Guria, Chandan & Pathak, Akhilendra K., 2018. "Optimal cultivation towards enhanced algae-biomass and lipid production using Dunaliella tertiolecta for biofuel application and potential CO2 bio-fixation: Effect of nitrogen deficient fertilizer, li," Energy, Elsevier, vol. 148(C), pages 1069-1086.
    12. Yin, Qingrong & Mao, Weiwei & Chen, Danqing & Song, Chunfeng, 2023. "Effect of adding tertiary amine TMEDA and space hindered amine DACH on the CO2 chemical absorption-microalgae conversion system," Energy, Elsevier, vol. 263(PC).
    13. Nurdiawati, Anissa & Zaini, Ilman Nuran & Irhamna, Adrian Rizqi & Sasongko, Dwiwahju & Aziz, Muhammad, 2019. "Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 369-381.
    14. Dickson, Rofice & Liu, J. Jay, 2021. "A strategy for advanced biofuel production and emission utilization from macroalgal biorefinery using superstructure optimization," Energy, Elsevier, vol. 221(C).
    15. Ramos Tercero, Elia Armandina & Domenicali, Giacomo & Bertucco, Alberto, 2014. "Autotrophic production of biodiesel from microalgae: An updated process and economic analysis," Energy, Elsevier, vol. 76(C), pages 807-815.
    16. Banerjee, Avik & Guria, Chandan & Maiti, Subodh K., 2016. "Fertilizer assisted optimal cultivation of microalgae using response surface method and genetic algorithm for biofuel feedstock," Energy, Elsevier, vol. 115(P1), pages 1272-1290.
    17. Grira, Soumaya & Abu Khalifeh, Hadil & Alkhedher, Mohammad & Ramadan, Mohamad, 2023. "The conventional microalgal biofuel production process and the alternative milking pathway: A review," Energy, Elsevier, vol. 277(C).
    18. Zhang, Bing & Li, Wei & Guo, Yuan & Zhang, Zhiqiang & Shi, Wenxin & Cui, Fuyi & Lens, Piet N.L. & Tay, Joo Hwa, 2020. "Microalgal-bacterial consortia: From interspecies interactions to biotechnological applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    19. Ewa Knapik & Katarzyna Chruszcz-Lipska, 2020. "Chemistry of Reservoir Fluids in the Aspect of CO 2 Injection for Selected Oil Reservoirs in Poland," Energies, MDPI, vol. 13(23), pages 1-19, December.
    20. Krishnamoorthy, Amarnath & Rodriguez, Cristina & Durrant, Andy, 2023. "Optimisation of ultrasonication pretreatment on microalgae Chlorella Vulgaris & Nannochloropsis Oculata for lipid extraction in biodiesel production," Energy, Elsevier, vol. 278(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222003565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.