IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v221y2021ics0360544221001201.html
   My bibliography  Save this article

Combustion of distillery sludge mixed with coal in a drop tube furnace and emission characteristics

Author

Listed:
  • Manwatkar, Prashik
  • Dhote, Lekha
  • Pandey, Ram Avtar
  • Middey, Anirban
  • Kumar, Sunil

Abstract

Co-combustion of coal with distillery sludge waste (DSW) was investigated in a laboratory-scale Drop Tube Furnace (DTF) plant. This study examined the feasibility of combustion of sludge with coal using preliminary testing methods, such as thermogravimetric, ultimate and proximate analysis followed by combustion experiments. These methods helped to identify burnout efficiency, emitted pollutants, and metal constituents in the bottom/fly ash. The ratios of coal to DSW in the feed was 90:10%, 95:5%, 98:2% and 100:0% by dry weight basis. The vibrator feeder and airflow rate were set at the rate of 1.5 kg/h and 150 L/min with slightly negative pressure. The concentration of gases (i.e. nitrogen oxides (NOx), sulphur dioxide (SO2), carbon mono-oxide (CO), hydrocarbon (HC)) and particulate matter (PM) on DSW combustion was measured and compared with the combustion of coal. The pattern of gaseous emission and combustion efficiency showed high degree linear combinations through Pearson’s correlation coefficient. The decrease in the concentration of PM (76.67 ± 10.41 mg/m3 to 91.33 ± 17.62 mg/m3) and SO2 (444 ± 20.63 mg/m3 to 156.60 ± 12.26 mg/m3), increase in the concentration of NOx (136 ± 15.41 mg/m3 to 387 ± 15.2 mg/m3) and CO (26.15 ± 5.36 mg/m3 to 824.32 ± 43.70 mg/m3), unburnt carbon percentage in the fly ash, and clinker formation were taken into account to optimum the sludge proportion in the DTF under a given set of combustion conditions. Most importantly, an increase in sludge quantity (i.e. 2%, 5%, and 10%) showed a decrease in the burnout efficiency (98.41%, 95.91%, and 92.6%, respectively).

Suggested Citation

  • Manwatkar, Prashik & Dhote, Lekha & Pandey, Ram Avtar & Middey, Anirban & Kumar, Sunil, 2021. "Combustion of distillery sludge mixed with coal in a drop tube furnace and emission characteristics," Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221001201
    DOI: 10.1016/j.energy.2021.119871
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221001201
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choi, Minsung & Kim, Kibeom & Li, Xinzhuo & Deng, Kaiwen & Park, Yeseul & Seo, Minseok & Sung, Yonmo & Choi, Gyungmin, 2020. "Strategic combustion technology with exhaust tube vortex flame: Combined effect of biomass co-firing and air-staged combustion on combustion characteristics and ash deposition," Energy, Elsevier, vol. 203(C).
    2. Fytili, D. & Zabaniotou, A., 2008. "Utilization of sewage sludge in EU application of old and new methods--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 116-140, January.
    3. Tyagi, Vinay Kumar & Lo, Shang-Lien, 2013. "Sludge: A waste or renewable source for energy and resources recovery?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 708-728.
    4. Kim, Daegi & Park, Seyong & Park, Ki Young, 2017. "Upgrading the fuel properties of sludge and low rank coal mixed fuel through hydrothermal carbonization," Energy, Elsevier, vol. 141(C), pages 598-602.
    5. Duan, Lunbo & Liu, Daoyin & Chen, Xiaoping & Zhao, Changsui, 2012. "Fly ash recirculation by bottom feeding on a circulating fluidized bed boiler co-burning coal sludge and coal," Applied Energy, Elsevier, vol. 95(C), pages 295-299.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Inesa Kniuipytė & Marius Praspaliauskas & Jonė Venclovienė & Jūratė Žaltauskaitė, 2023. "Soil Remediation after Sewage Sludge or Sewage Sludge Char Application with Industrial Hemp and Its Potential for Bioenergy Production," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    3. Liu, Huan & Yi, Linlin & Zhang, Qiang & Hu, Hongyun & Lu, Geng & Li, Aijun & Yao, Hong, 2016. "Co-production of clean syngas and ash adsorbent during sewage sludge gasification: Synergistic effect of Fenton peroxidation and CaO conditioning," Applied Energy, Elsevier, vol. 179(C), pages 1062-1068.
    4. Feng, Hongyu & Cui, Jintao & Xu, Zhang & Hantoko, Dwi & Zhong, Li & Xu, Donghai & Yan, Mi, 2023. "Sewage sludge treatment via hydrothermal carbonization combined with supercritical water gasification: Fuel production and pollution degradation," Renewable Energy, Elsevier, vol. 210(C), pages 822-831.
    5. Shao, Ling & Chen, G.Q., 2016. "Renewability assessment of a production system: Based on embodied energy as emergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 380-392.
    6. Elena Goldan & Valentin Nedeff & Narcis Barsan & Mihaela Culea & Claudia Tomozei & Mirela Panainte-Lehadus & Emilian Mosnegutu, 2022. "Evaluation of the Use of Sewage Sludge Biochar as a Soil Amendment—A Review," Sustainability, MDPI, vol. 14(9), pages 1-22, April.
    7. Wu, Xiaoyan & Tian, Yu & Zhou, Xiaoliang & Kong, Xiaowei & Zhang, Jun & Zuo, Wei & Wang, Dezhen & Ye, Xuesong, 2016. "Performance and long-term stability of nickel/yttria-stabilized zirconia anode-supported solid oxide fuel cell in simulated biosyngas," Energy, Elsevier, vol. 114(C), pages 1-9.
    8. Ren, Jingzheng & Liang, Hanwei & Dong, Liang & Gao, Zhiqiu & He, Chang & Pan, Ming & Sun, Lu, 2017. "Sustainable development of sewage sludge-to-energy in China: Barriers identification and technologies prioritization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 384-396.
    9. Abdel Wahaab, Rifaat & Mahmoud, Mohamed & van Lier, Jules B., 2020. "Toward achieving sustainable management of municipal wastewater sludge in Egypt: The current status and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    10. Claire Villette & Loïc Maurer & Julie Zumsteg & Jérôme Mutterer & Adrien Wanko & Dimitri Heintz, 2023. "Mass spectrometry imaging for biosolids characterization to assess ecological or health risks before reuse," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Dilvin Cebi & Melih Soner Celiktas & Hasan Sarptas, 2022. "A Review on Sewage Sludge Valorization via Hydrothermal Carbonization and Applications for Circular Economy," Circular Economy and Sustainability, Springer, vol. 2(4), pages 1345-1367, December.
    12. Adrian K. James & Ronald W. Thring & Steve Helle & Harpuneet S. Ghuman, 2012. "Ash Management Review—Applications of Biomass Bottom Ash," Energies, MDPI, vol. 5(10), pages 1-18, October.
    13. Meng, Xiangmei & de Jong, Wiebren & Kudra, Tadeusz, 2016. "A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 73-114.
    14. Sanchez, M.E. & Otero, M. & Gómez, X. & Morán, A., 2009. "Thermogravimetric kinetic analysis of the combustion of biowastes," Renewable Energy, Elsevier, vol. 34(6), pages 1622-1627.
    15. Arbulú, Italo & Lozano, Javier & Rey-Maquieira, Javier, 2017. "The challenges of tourism to waste-to-energy public-private partnerships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 916-921.
    16. Lu, Xiaoluan & Ma, Xiaoqian & Chen, Xinfei, 2021. "Co-hydrothermal carbonization of sewage sludge and lignocellulosic biomass: Fuel properties and heavy metal transformation behaviour of hydrochars," Energy, Elsevier, vol. 221(C).
    17. Daniel Ddiba & Kim Andersson & Arno Rosemarin & Helfrid Schulte-Herbrüggen & Sarah Dickin, 2022. "The circular economy potential of urban organic waste streams in low- and middle-income countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 1116-1144, January.
    18. Seongmin Kang & Changsang Cho & Ki-Hyun Kim & Eui-chan Jeon, 2018. "Fossil Carbon Fraction and Measuring Cycle for Sewage Sludge Waste Incineration," Sustainability, MDPI, vol. 10(8), pages 1-8, August.
    19. Jiawen Zhang & Zhiyi Liang & Toru Matsumoto & Tiejia Zhang, 2022. "Environmental and Economic Implication of Implementation Scale of Sewage Sludge Recycling Systems Considering Carbon Trading Price," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    20. Bidart, Christian & Fröhling, Magnus & Schultmann, Frank, 2014. "Electricity and substitute natural gas generation from the conversion of wastewater treatment plant sludge," Applied Energy, Elsevier, vol. 113(C), pages 404-413.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221001201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.