IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v213y2020ics0360544220321228.html
   My bibliography  Save this article

Manufacturer-data-only-based modeling and optimized design of thermoelectric harvesters operating at low temperature gradients

Author

Listed:
  • Lineykin, Simon
  • Maslah, Kareem
  • Kuperman, Alon

Abstract

The paper presents a methodology of assessing performance of thermoelectric harvesters (TEH) operating at low temperature gradients using manufacturer datasheet only. Simplified and full TEH models with temperature-independent parameters are established with the former developed in the form of a two-terminal equivalent circuit, typical for renewable energy generators. Normalized expression is derived to assess maximum extractable TEH power for certain environmental conditions, heat sink thermal resistance and thermoelectric module figure of merit. Key role of the heat sink in TEH performance is revealed and corresponding design guidelines are provided. Experimental results are provided, demonstrating close match with analytical predictions, obtained by the proposed methodology.

Suggested Citation

  • Lineykin, Simon & Maslah, Kareem & Kuperman, Alon, 2020. "Manufacturer-data-only-based modeling and optimized design of thermoelectric harvesters operating at low temperature gradients," Energy, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:energy:v:213:y:2020:i:c:s0360544220321228
    DOI: 10.1016/j.energy.2020.119015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220321228
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kolesnik, Sergei & Sitbon, Moshe & Gadelovits, Shlomo & Suntio, Teuvo & Kuperman, Alon, 2015. "Interfacing renewable energy sources for maximum power transfer—Part II: Dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1771-1783.
    2. Kim, Yong Jun & Gu, Hyun Mo & Kim, Choong Sun & Choi, Hyeongdo & Lee, Gyusoup & Kim, Seongho & Yi, Kevin K. & Lee, Sang Gug & Cho, Byung Jin, 2018. "High-performance self-powered wireless sensor node driven by a flexible thermoelectric generator," Energy, Elsevier, vol. 162(C), pages 526-533.
    3. Madan, Deepa & Wang, Zuoqian & Wright, Paul K. & Evans, James W., 2015. "Printed flexible thermoelectric generators for use on low levels of waste heat," Applied Energy, Elsevier, vol. 156(C), pages 587-592.
    4. He, Wei & Zhang, Gan & Zhang, Xingxing & Ji, Jie & Li, Guiqiang & Zhao, Xudong, 2015. "Recent development and application of thermoelectric generator and cooler," Applied Energy, Elsevier, vol. 143(C), pages 1-25.
    5. Chen, Wei-Hsin & Liao, Chen-Yeh & Hung, Chen-I & Huang, Wei-Lun, 2012. "Experimental study on thermoelectric modules for power generation at various operating conditions," Energy, Elsevier, vol. 45(1), pages 874-881.
    6. Rowe, D.M., 1999. "Thermoelectrics, an environmentally-friendly source of electrical power," Renewable Energy, Elsevier, vol. 16(1), pages 1251-1256.
    7. Watson, Thomas C. & Vincent, Joshua N. & Lee, Hohyun, 2019. "Effect of DC-DC voltage step-up converter impedance on thermoelectric energy harvester system design strategy," Applied Energy, Elsevier, vol. 239(C), pages 898-907.
    8. Pietrzyk, Kyle & Soares, Joseph & Ohara, Brandon & Lee, Hohyun, 2016. "Power generation modeling for a wearable thermoelectric energy harvester with practical limitations," Applied Energy, Elsevier, vol. 183(C), pages 218-228.
    9. Lee, Gyusoup & Kim, Choong Sun & Kim, Seongho & Kim, Yong Jun & Choi, Hyeongdo & Cho, Byung Jin, 2019. "Flexible heatsink based on a phase-change material for a wearable thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 12-18.
    10. Lan, Song & Yang, Zhijia & Chen, Rui & Stobart, Richard, 2018. "A dynamic model for thermoelectric generator applied to vehicle waste heat recovery," Applied Energy, Elsevier, vol. 210(C), pages 327-338.
    11. Wu, Yongjia & Zuo, Lei & Chen, Jie & Klein, Jackson A., 2016. "A model to analyze the device level performance of thermoelectric generator," Energy, Elsevier, vol. 115(P1), pages 591-603.
    12. Gadelovits, Shlomo & Kuperman, Alon & Sitbon, Moshe & Aharon, Ilan & Singer, Sigmond, 2014. "Interfacing renewable energy sources for maximum power transfer—Part I: Statics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 501-508.
    13. Nour Eddine, A. & Chalet, D. & Faure, X. & Aixala, L. & Chessé, P., 2018. "Optimization and characterization of a thermoelectric generator prototype for marine engine application," Energy, Elsevier, vol. 143(C), pages 682-695.
    14. Massaguer, Eduard & Massaguer, Albert & Pujol, Toni & Gonzalez, Jose Ramon & Montoro, Lino, 2017. "Modelling and analysis of longitudinal thermoelectric energy harvesters considering series-parallel interconnection effect," Energy, Elsevier, vol. 129(C), pages 59-69.
    15. Chen, Wei-Hsin & Lin, Yi-Xian & Wang, Xiao-Dong & Lin, Yu-Li, 2019. "A comprehensive analysis of the performance of thermoelectric generators with constant and variable properties," Applied Energy, Elsevier, vol. 241(C), pages 11-24.
    16. Yang, Feng & Du, Lin & Chen, Weigen & Li, Jian & Wang, Youyuan & Wang, Disheng, 2017. "Hybrid energy harvesting for condition monitoring sensors in power grids," Energy, Elsevier, vol. 118(C), pages 435-445.
    17. Ghomian, Taher & Mehraeen, Shahab, 2019. "Survey of energy scavenging for wearable and implantable devices," Energy, Elsevier, vol. 178(C), pages 33-49.
    18. Massaguer, Eduard & Massaguer, Albert & Montoro, Lino & Gonzalez, J.R., 2015. "Modeling analysis of longitudinal thermoelectric energy harvester in low temperature waste heat recovery applications," Applied Energy, Elsevier, vol. 140(C), pages 184-195.
    19. Högblom, Olle & Andersson, Ronnie, 2016. "A simulation framework for prediction of thermoelectric generator system performance," Applied Energy, Elsevier, vol. 180(C), pages 472-482.
    20. Gao, Mingyuan & Su, Chengguang & Cong, Jianli & Yang, Fan & Wang, Yifeng & Wang, Ping, 2019. "Harvesting thermoelectric energy from railway track," Energy, Elsevier, vol. 180(C), pages 315-329.
    21. Park, Hwanjoo & Eom, Yoomin & Lee, Dongkeon & Kim, Jiyong & Kim, Hoon & Park, Gimin & Kim, Woochul, 2019. "High power output based on watch-strap-shaped body heat harvester using bulk thermoelectric materials," Energy, Elsevier, vol. 187(C).
    22. Massaguer, E. & Massaguer, A. & Pujol, T. & Comamala, M. & Montoro, L. & Gonzalez, J.R., 2019. "Fuel economy analysis under a WLTP cycle on a mid-size vehicle equipped with a thermoelectric energy recovery system," Energy, Elsevier, vol. 179(C), pages 306-314.
    23. Tahami, Seyed Amid & Gholikhani, Mohammadreza & Nasouri, Reza & Dessouky, Samer & Papagiannakis, A.T., 2019. "Developing a new thermoelectric approach for energy harvesting from asphalt pavements," Applied Energy, Elsevier, vol. 238(C), pages 786-795.
    24. Kong, Deyue & Zhu, Wei & Guo, Zhanpeng & Deng, Yuan, 2019. "High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting," Energy, Elsevier, vol. 175(C), pages 292-299.
    25. Lee, Dongkeon & Park, Hwanjoo & Park, Gimin & Kim, Jiyong & Kim, Hoon & Cho, Hanki & Han, Seungwoo & Kim, Woochul, 2019. "Liquid-metal-electrode-based compact, flexible, and high-power thermoelectric device," Energy, Elsevier, vol. 188(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lineykin, Simon & Sitbon, Moshe & Kuperman, Alon, 2021. "Design and optimization of low-temperature gradient thermoelectric harvester for wireless sensor network node on water pipelines," Applied Energy, Elsevier, vol. 283(C).
    2. Lv, Jin-Ran & Ma, Jin-Lei & Dai, Lu & Yin, Tao & He, Zhi-Zhu, 2022. "A high-performance wearable thermoelectric generator with comprehensive optimization of thermal resistance and voltage boosting conversion," Applied Energy, Elsevier, vol. 312(C).
    3. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    4. Song, Gyeong Ju & Cho, Jae Yong & Kim, Kyung-Bum & Ahn, Jung Hwan & Song, Yewon & Hwang, Wonseop & Hong, Seong Do & Sung, Tae Hyun, 2019. "Development of a pavement block piezoelectric energy harvester for self-powered walkway applications," Applied Energy, Elsevier, vol. 256(C).
    5. Sijing Zhu & Zheng Fan & Baoquan Feng & Runze Shi & Zexin Jiang & Ying Peng & Jie Gao & Lei Miao & Kunihito Koumoto, 2022. "Review on Wearable Thermoelectric Generators: From Devices to Applications," Energies, MDPI, vol. 15(9), pages 1-27, May.
    6. Twaha, Ssennoga & Zhu, Jie & Yan, Yuying & Li, Bo, 2016. "A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 698-726.
    7. Ding, L.C. & Akbarzadeh, A. & Date, Abhijit, 2016. "Electric power generation via plate type power generation unit from solar pond using thermoelectric cells," Applied Energy, Elsevier, vol. 183(C), pages 61-76.
    8. Smith, Eric & Hosseini, Seyed Ehsan, 2019. "Human Body Micro-power plant," Energy, Elsevier, vol. 183(C), pages 16-24.
    9. Chen, Jiangfan & Fang, Zheng & Azam, Ali & Wu, Xiaoping & Zhang, Zutao & Lu, Linhai & Li, Dongyang, 2023. "An energy self-circulation system based on the wearable thermoelectric harvester for ART driver monitoring," Energy, Elsevier, vol. 262(PA).
    10. Ando Junior, O.H. & Maran, A.L.O. & Henao, N.C., 2018. "A review of the development and applications of thermoelectric microgenerators for energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 376-393.
    11. Ma, Ting & Qu, Zuoming & Yu, Xingfei & Lu, Xing & Chen, Yitung & Wang, Qiuwang, 2019. "Numerical study and optimization of thermoelectric-hydraulic performance of a novel thermoelectric generator integrated recuperator," Energy, Elsevier, vol. 174(C), pages 1176-1187.
    12. Karalis, George & Tzounis, Lazaros & Lambrou, Eleftherios & Gergidis, Leonidas N. & Paipetis, Alkiviadis S., 2019. "A carbon fiber thermoelectric generator integrated as a lamina within an 8-ply laminate epoxy composite: Efficient thermal energy harvesting by advanced structural materials," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Liu, Shuang & Hu, Bingkun & Liu, Dawei & Li, Fu & Li, Jing-Feng & Li, Bo & Li, Liangliang & Lin, Yuan-Hua & Nan, Ce-Wen, 2018. "Micro-thermoelectric generators based on through glass pillars with high output voltage enabled by large temperature difference," Applied Energy, Elsevier, vol. 225(C), pages 600-610.
    14. Massaguer, Albert & Massaguer, Eduard, 2021. "Faster and more accurate simulations of thermoelectric generators through the prediction of the optimum load resistance for maximum power and efficiency points," Energy, Elsevier, vol. 226(C).
    15. Lv, Hao & Wang, Xiao-Dong & Wang, Tian-Hu & Cheng, Chin-Hsiang, 2016. "Improvement of transient supercooling of thermoelectric coolers through variable semiconductor cross-section," Applied Energy, Elsevier, vol. 164(C), pages 501-508.
    16. He, Min & Wang, Enhua & Zhang, Yuanyin & Zhang, Wen & Zhang, Fujun & Zhao, Changlu, 2020. "Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine," Applied Energy, Elsevier, vol. 274(C).
    17. Yuan, Hengfeng & Qing, Shaowei & Ren, Shangkun & Rezania, Alireza & Rosendahl, Lasse & Wen, Xiankui & Zhong, Jingliang & Gou, Xiaolong & Tang, Shengli & E, Peng, 2023. "Modelling and optimization analysis of a novel hollow flexible-filler-based bulk thermoelectric generator for human body sensor," Energy, Elsevier, vol. 281(C).
    18. Liang, Jia & Huang, Muzhang & Zhang, Xuefei & Wan, Chunlei, 2022. "Structural design for wearable self-powered thermoelectric modules with efficient temperature difference utilization and high normalized maximum power density," Applied Energy, Elsevier, vol. 327(C).
    19. Chen, Wei-Hsin & Carrera Uribe, Manuel & Kwon, Eilhann E. & Lin, Kun-Yi Andrew & Park, Young-Kwon & Ding, Lu & Saw, Lip Huat, 2022. "A comprehensive review of thermoelectric generation optimization by statistical approach: Taguchi method, analysis of variance (ANOVA), and response surface methodology (RSM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    20. Ding, L.C. & Akbarzadeh, A. & Tan, L., 2018. "A review of power generation with thermoelectric system and its alternative with solar ponds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 799-812.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:213:y:2020:i:c:s0360544220321228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.