IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v211y2020ics0360544220316868.html
   My bibliography  Save this article

Thermodynamic investigation of cascaded latent heat storage system based on a dynamic heat transfer model and DE algorithm

Author

Listed:
  • Zhang, Chunwei
  • Zhang, Xuejun
  • Qiu, Limin
  • Zhao, Yang

Abstract

In cascaded latent heat storage (CLHS) systems, the phase change processes of phase change materials (PCMs) can hardly sync due to different parameters in each stage. Hence, the thermodynamic analyses based on the static state hypothesis have limitations. In this study, a dynamic heat transfer model, which can describe the transient variation of the PCM temperature, was developed. Based on the model, six objective functions were defined to evaluate the CLHS system performance. The differential evolution (DE) algorithm was used to optimize the melting temperatures and mass of PCMs under different conditions. The results indicate that the objective functions based on the discharging process are superior to those based on the charging process, and they can be selected as optimization criteria according to specific design purposes. The switching operation can effectively improve the CLHS system performance for the unsteady heat sources that include a drop in temperature. The more extensive the temperature fluctuation range, the more significant the improvement. Furthermore, the stage number and the maximum discharging time have an important impact on the system efficiencies, and the former should be longer than the maximum charging time. This study provides theoretical guidance for practical applications of CLHS systems.

Suggested Citation

  • Zhang, Chunwei & Zhang, Xuejun & Qiu, Limin & Zhao, Yang, 2020. "Thermodynamic investigation of cascaded latent heat storage system based on a dynamic heat transfer model and DE algorithm," Energy, Elsevier, vol. 211(C).
  • Handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220316868
    DOI: 10.1016/j.energy.2020.118578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220316868
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Huiru & Liu, Zhenyu & Wu, Huiying, 2017. "Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array," Energy, Elsevier, vol. 138(C), pages 739-751.
    2. Peiró, Gerard & Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2015. "Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage," Renewable Energy, Elsevier, vol. 83(C), pages 729-736.
    3. Al-Maghalseh, Maher & Mahkamov, Khamid, 2018. "Methods of heat transfer intensification in PCM thermal storage systems: Review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 62-94.
    4. Li, Ya-Qi & He, Ya-Ling & Wang, Zhi-Feng & Xu, Chao & Wang, Weiwei, 2012. "Exergy analysis of two phase change materials storage system for solar thermal power with finite-time thermodynamics," Renewable Energy, Elsevier, vol. 39(1), pages 447-454.
    5. Eisapour, M. & Eisapour, Amir Hossein & Hosseini, M.J. & Talebizadehsardari, P., 2020. "Exergy and energy analysis of wavy tubes photovoltaic-thermal systems using microencapsulated PCM nano-slurry coolant fluid," Applied Energy, Elsevier, vol. 266(C).
    6. Xu, H.J. & Zhao, C.Y., 2019. "Analytical considerations on optimization of cascaded heat transfer process for thermal storage system with principles of thermodynamics," Renewable Energy, Elsevier, vol. 132(C), pages 826-845.
    7. Chiu, Justin N.W. & Martin, Viktoria, 2013. "Multistage latent heat cold thermal energy storage design analysis," Applied Energy, Elsevier, vol. 112(C), pages 1438-1445.
    8. Liu, Y.K. & Tao, Y.B., 2018. "Thermodynamic analysis and optimization of multistage latent heat storage unit under unsteady inlet temperature based on entransy theory," Applied Energy, Elsevier, vol. 227(C), pages 488-496.
    9. Agyenim, Francis & Hewitt, Neil & Eames, Philip & Smyth, Mervyn, 2010. "A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 615-628, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shen, Yongliang & Liu, Shuli & Mazhar, Abdur Rehman & Han, Xiaojing & Yang, Liu & Yang, Xiu'e, 2021. "A review of solar-driven short-term low temperature heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Xu, Bowen & Lu, Shilei & Wang, Ran & Zhai, Xue & Fan, Minchao & Jia, Wei & Du, Haibing, 2021. "Exergy analysis and optimization of charging–discharging processes for cascaded latent heat storage system," Energy, Elsevier, vol. 223(C).
    3. Fan, Yubin & Zhang, Chunwei & Jiang, Long & Zhang, Xuejun & Qiu, Limin, 2022. "Exploration on two-stage latent thermal energy storage for heat recovery in cryogenic air separation purification system," Energy, Elsevier, vol. 239(PB).
    4. Lu, Shilei & Lin, Quanyi & Xu, Bowen & Yue, Lu & Feng, Wei, 2023. "Thermodynamic performance of cascaded latent heat storage systems for building heating," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chunwei & Zhang, Xuejun & Qiu, Limin & Zhao, Yang, 2021. "Thermodynamic analysis and improvement of cascaded latent heat storage system using temperature-enthalpy diagram," Energy, Elsevier, vol. 219(C).
    2. Lu, Shilei & Lin, Quanyi & Xu, Bowen & Yue, Lu & Feng, Wei, 2023. "Thermodynamic performance of cascaded latent heat storage systems for building heating," Energy, Elsevier, vol. 282(C).
    3. Zhang, Chunwei & Yu, Meng & Fan, Yubin & Zhang, Xuejun & Zhao, Yang & Qiu, Limin, 2020. "Numerical study on heat transfer enhancement of PCM using three combined methods based on heat pipe," Energy, Elsevier, vol. 195(C).
    4. Shibahara, Makoto & Liu, Qiusheng & Fukuda, Katsuya, 2016. "Transient natural convection heat transfer of liquid D-mannitol on a horizontal cylinder," Renewable Energy, Elsevier, vol. 99(C), pages 971-977.
    5. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    6. Cheng, Xiwen & Zhai, Xiaoqiang, 2018. "Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials," Applied Energy, Elsevier, vol. 215(C), pages 566-576.
    7. Xu, H.J. & Zhao, C.Y., 2019. "Analytical considerations on optimization of cascaded heat transfer process for thermal storage system with principles of thermodynamics," Renewable Energy, Elsevier, vol. 132(C), pages 826-845.
    8. Li Zhang & Zhihui Liu & Guang Jin & Erdem Cuce & Jing Jin & Shaopeng Guo, 2022. "Heat Storage and Release Performance of Cascade Phase Change Units for Solar Heating in a Severe Cold Region of China," Energies, MDPI, vol. 15(19), pages 1-11, October.
    9. Sodhi, Gurpreet Singh & Muthukumar, P., 2021. "Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution," Renewable Energy, Elsevier, vol. 171(C), pages 299-314.
    10. Li, Y.Q. & He, Y.L. & Song, H.J. & Xu, C. & Wang, W.W., 2013. "Numerical analysis and parameters optimization of shell-and-tube heat storage unit using three phase change materials," Renewable Energy, Elsevier, vol. 59(C), pages 92-99.
    11. Liu, Ming & Riahi, Soheila & Jacob, Rhys & Belusko, Martin & Bruno, Frank, 2020. "Design of sensible and latent heat thermal energy storage systems for concentrated solar power plants: Thermal performance analysis," Renewable Energy, Elsevier, vol. 151(C), pages 1286-1297.
    12. Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Advanced exergy analysis of an air conditioning system incorporating thermal energy storage," Energy, Elsevier, vol. 77(C), pages 945-952.
    13. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    14. Fan, Man & Suo, Hanxiao & Yang, Hua & Zhang, Xuemei & Li, Xiaofei & Guo, Leihong & Kong, Xiangfei, 2022. "Experimental study on thermophysical parameters of a solar assisted cascaded latent heat thermal energy storage (CLHTES) system," Energy, Elsevier, vol. 256(C).
    15. Wang, Huiru & Liu, Zhenyu & Wu, Huiying, 2017. "Entransy dissipation-based thermal resistance optimization of slab LHTES system with multiple PCMs arranged in a 2D array," Energy, Elsevier, vol. 138(C), pages 739-751.
    16. Ibrahim, Nasiru I. & Al-Sulaiman, Fahad A. & Rahman, Saidur & Yilbas, Bekir S. & Sahin, Ahmet Z., 2017. "Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 26-50.
    17. Xu, H.J. & Zhao, C.Y., 2016. "Thermal efficiency analysis of the cascaded latent heat/cold storage with multi-stage heat engine model," Renewable Energy, Elsevier, vol. 86(C), pages 228-237.
    18. Park, Jinsoo & Choi, Sung Ho & Karng, Sarng Woo, 2021. "Cascaded latent thermal energy storage using a charging control method," Energy, Elsevier, vol. 215(PA).
    19. Li, Tao & Zhu, Yuanyuan & Hu, Xinlei & Mao, Qianjun, 2023. "Numerical investigation of the influence of unsteady inlet temperature on heat storage performance of a novel bifurcated finned shell-tube heat storage tank," Energy, Elsevier, vol. 280(C).
    20. Chen, Xue & Li, Xiaolei & Xia, Xinlin & Sun, Chuang & Liu, Rongqiang, 2021. "Thermal storage analysis of a foam-filled PCM heat exchanger subjected to fluctuating flow conditions," Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:211:y:2020:i:c:s0360544220316868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.