IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v83y2015icp729-736.html
   My bibliography  Save this article

Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage

Author

Listed:
  • Peiró, Gerard
  • Gasia, Jaume
  • Miró, Laia
  • Cabeza, Luisa F.

Abstract

The present paper provides on one hand, a literature review of the different studies available in the scientific literature where the concept of multiple phase change materials (PCM) configuration, also named cascaded or multi-stage, has been presented and on the other hand, an experimental evaluation of the advantages of using the multiple PCM configuration instead of the single PCM configuration in thermal energy storage (TES) systems at pilot plant to fill the gap of experimental and high scales studies on this concept in the literature. Two PCM with melting temperatures in a temperature range of 150–200 °C were selected due to their high value of heat of fusion and compared: d-mannitol and hydroquinone. Three configurations were evaluated: (1) single PCM with hydroquinone, (2) single PCM with d-mannitol and (3) multiple PCM with hydroquinone and d-mannitol. A discussion regarding the results on the specific energy stored and effectiveness as well as the evolution of the PCM and heat transfer fluid (HTF) through the time and at different and representative locations of the facility is presented. Results showed that the multiple PCMs configuration introduced an effectiveness enhancement of 19.36% if compared with single PCM configuration as well as a higher uniformity on the HTF temperature difference between the inlet and outlet.

Suggested Citation

  • Peiró, Gerard & Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2015. "Experimental evaluation at pilot plant scale of multiple PCMs (cascaded) vs. single PCM configuration for thermal energy storage," Renewable Energy, Elsevier, vol. 83(C), pages 729-736.
  • Handle: RePEc:eee:renene:v:83:y:2015:i:c:p:729-736
    DOI: 10.1016/j.renene.2015.05.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115004085
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.05.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jegadheeswaran, S. & Pohekar, Sanjay D., 2009. "Performance enhancement in latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2225-2244, December.
    2. Gil, Antoni & Oró, Eduard & Peiró, Gerard & Álvarez, Servando & Cabeza, Luisa F., 2013. "Material selection and testing for thermal energy storage in solar cooling," Renewable Energy, Elsevier, vol. 57(C), pages 366-371.
    3. Chiu, Justin N.W. & Martin, Viktoria, 2013. "Multistage latent heat cold thermal energy storage design analysis," Applied Energy, Elsevier, vol. 112(C), pages 1438-1445.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao, Y.B. & He, Ya-Ling, 2018. "A review of phase change material and performance enhancement method for latent heat storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 245-259.
    2. Kirincic, Mateo & Trp, Anica & Lenic, Kristian, 2021. "Influence of natural convection during melting and solidification of paraffin in a longitudinally finned shell-and-tube latent thermal energy storage on the applicability of developed numerical models," Renewable Energy, Elsevier, vol. 179(C), pages 1329-1344.
    3. Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
    4. Mosaffa, A.H. & Garousi Farshi, L. & Infante Ferreira, C.A. & Rosen, M.A., 2014. "Energy and exergy evaluation of a multiple-PCM thermal storage unit for free cooling applications," Renewable Energy, Elsevier, vol. 68(C), pages 452-458.
    5. Pintaldi, Sergio & Perfumo, Cristian & Sethuvenkatraman, Subbu & White, Stephen & Rosengarten, Gary, 2015. "A review of thermal energy storage technologies and control approaches for solar cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 975-995.
    6. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2018. "Cyclic performance of cascaded and multi-layered solid-PCM shell-and-tube thermal energy storage systems: A case study of the 19.9 MWe Gemasolar CSP plant," Applied Energy, Elsevier, vol. 228(C), pages 240-253.
    7. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    8. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    9. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Li, W.Q. & Qu, Z.G. & Zhang, B.L. & Zhao, K. & Tao, W.Q., 2013. "Thermal behavior of porous stainless-steel fiber felt saturated with phase change material," Energy, Elsevier, vol. 55(C), pages 846-852.
    11. Shibahara, Makoto & Liu, Qiusheng & Fukuda, Katsuya, 2016. "Transient natural convection heat transfer of liquid D-mannitol on a horizontal cylinder," Renewable Energy, Elsevier, vol. 99(C), pages 971-977.
    12. Cheng, Xiwen & Zhai, Xiaoqiang, 2018. "Thermal performance analysis and optimization of a cascaded packed bed cool thermal energy storage unit using multiple phase change materials," Applied Energy, Elsevier, vol. 215(C), pages 566-576.
    13. Fernandes, D. & Pitié, F. & Cáceres, G. & Baeyens, J., 2012. "Thermal energy storage: “How previous findings determine current research priorities”," Energy, Elsevier, vol. 39(1), pages 246-257.
    14. Islam, Md. Parvez & Morimoto, Tetsuo, 2018. "Advances in low to medium temperature non-concentrating solar thermal technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2066-2093.
    15. Tumirah, K. & Hussein, M.Z. & Zulkarnain, Z. & Rafeadah, R., 2014. "Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage," Energy, Elsevier, vol. 66(C), pages 881-890.
    16. Li Zhang & Zhihui Liu & Guang Jin & Erdem Cuce & Jing Jin & Shaopeng Guo, 2022. "Heat Storage and Release Performance of Cascade Phase Change Units for Solar Heating in a Severe Cold Region of China," Energies, MDPI, vol. 15(19), pages 1-11, October.
    17. Khamlich, Imane & Zeng, Kuo & Flamant, Gilles & Baeyens, Jan & Zou, Chongzhe & Li, Jun & Yang, Xinyi & He, Xiao & Liu, Qingchuan & Yang, Haiping & Yang, Qing & Chen, Hanping, 2021. "Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    18. Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2016. "Materials and system requirements of high temperature thermal energy storage systems: A review. Part 2: Thermal conductivity enhancement techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1584-1601.
    19. Sodhi, Gurpreet Singh & Muthukumar, P., 2021. "Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution," Renewable Energy, Elsevier, vol. 171(C), pages 299-314.
    20. Martin Tenpierik & Yvonne Wattez & Michela Turrin & Tudor Cosmatu & Stavroula Tsafou, 2019. "Temperature Control in (Translucent) Phase Change Materials Applied in Facades: A Numerical Study," Energies, MDPI, vol. 12(17), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:83:y:2015:i:c:p:729-736. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.